N A Manucharova, E V Trosheva, E M Kol'tsova, E V Demkina, E V Karaevskaya, E M Rivkina, A V Mardanov, G I El'-Registan
{"title":"[用分子遗传学技术表征南极冻土原核复合体的结构]。","authors":"N A Manucharova, E V Trosheva, E M Kol'tsova, E V Demkina, E V Karaevskaya, E M Rivkina, A V Mardanov, G I El'-Registan","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A prokaryotic mesophilic organotrophic community responsible for 10% of the total microbial number determined by epifluorescence microscopy was reactivated in the samples ofAntarctic permafrost retrieved from the environment favoring long-term preservation of microbial communities (7500 years). No culturable forms were obtained without resuscitation procedures (CFU = 0). Proteobacteria, Actinobacteria, and Firmicutes were the dominant microbial groups in the complex. Initiation of the reactivated microbial complex by addition of chitin (0.1% wt/vol) resulted in an increased share of metabolically active biomass (up to 50%) due to the functional domination of chitinolytics caused by the target resource. Thus, sequential application of resuscitation procedures and initiation of a specific physiological group (in this case, chitinolytics) to a permafrost-preserved microbial community made it possible to reveal a prokaryotic complex capable of reversion of metabolic activity (FISH data), to determine its phylogenetic structure by metagenomic anal-ysis, and to isolate a pure culture of the dominant microorganism with high chitinolytic activity.</p>","PeriodicalId":18732,"journal":{"name":"Mikrobiologiia","volume":"85 1","pages":"83-91"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Characterization of the Structure of the Prokaryotic Complex of Antarctic Permafrost by Molecular Genetic Techniques].\",\"authors\":\"N A Manucharova, E V Trosheva, E M Kol'tsova, E V Demkina, E V Karaevskaya, E M Rivkina, A V Mardanov, G I El'-Registan\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A prokaryotic mesophilic organotrophic community responsible for 10% of the total microbial number determined by epifluorescence microscopy was reactivated in the samples ofAntarctic permafrost retrieved from the environment favoring long-term preservation of microbial communities (7500 years). No culturable forms were obtained without resuscitation procedures (CFU = 0). Proteobacteria, Actinobacteria, and Firmicutes were the dominant microbial groups in the complex. Initiation of the reactivated microbial complex by addition of chitin (0.1% wt/vol) resulted in an increased share of metabolically active biomass (up to 50%) due to the functional domination of chitinolytics caused by the target resource. Thus, sequential application of resuscitation procedures and initiation of a specific physiological group (in this case, chitinolytics) to a permafrost-preserved microbial community made it possible to reveal a prokaryotic complex capable of reversion of metabolic activity (FISH data), to determine its phylogenetic structure by metagenomic anal-ysis, and to isolate a pure culture of the dominant microorganism with high chitinolytic activity.</p>\",\"PeriodicalId\":18732,\"journal\":{\"name\":\"Mikrobiologiia\",\"volume\":\"85 1\",\"pages\":\"83-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mikrobiologiia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mikrobiologiia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Characterization of the Structure of the Prokaryotic Complex of Antarctic Permafrost by Molecular Genetic Techniques].
A prokaryotic mesophilic organotrophic community responsible for 10% of the total microbial number determined by epifluorescence microscopy was reactivated in the samples ofAntarctic permafrost retrieved from the environment favoring long-term preservation of microbial communities (7500 years). No culturable forms were obtained without resuscitation procedures (CFU = 0). Proteobacteria, Actinobacteria, and Firmicutes were the dominant microbial groups in the complex. Initiation of the reactivated microbial complex by addition of chitin (0.1% wt/vol) resulted in an increased share of metabolically active biomass (up to 50%) due to the functional domination of chitinolytics caused by the target resource. Thus, sequential application of resuscitation procedures and initiation of a specific physiological group (in this case, chitinolytics) to a permafrost-preserved microbial community made it possible to reveal a prokaryotic complex capable of reversion of metabolic activity (FISH data), to determine its phylogenetic structure by metagenomic anal-ysis, and to isolate a pure culture of the dominant microorganism with high chitinolytic activity.