You-Ming Fan, Qing-Yuan Huang, Yin-Ai Wu, Alan R Harvey, Qi Cui, Yu-Qi Gao
{"title":"Nogo-p4通过NgR1抑制低浓度神经生长因子诱导的PC12细胞TrkA信号","authors":"You-Ming Fan, Qing-Yuan Huang, Yin-Ai Wu, Alan R Harvey, Qi Cui, Yu-Qi Gao","doi":"10.1159/000442609","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Regeneration of injured axons in adult mammalian central nervous system (CNS) is not spontaneous. Nogo is a major inhibitory molecule contributing to axon regeneration failure. The molecular mechanisms of Nogo inhibition of axon regeneration are not completely understood. To further investigate the underlying mechanisms, we studied the effects of Nogo-p4, a 25-amino acid core inhibitory fragment of Nogo, on nerve growth factor (NGF)-induced TrkA signaling.</p><p><strong>Methods: </strong>NGF-differentiated PC12 cells were used as cell models. The effects of Nogo-p4 on two key components of TrkA signaling, phosphorylated Erk1/2 and Akt, were analyzed by western blot. Co-immunoprecipitation experiments were performed to detect the formation of NgR1/p75 complexes. Neurite growth was quantified by measuring the neurite length.</p><p><strong>Results: </strong>Nogo-p4 did not significantly affect TrkA signaling induced by 100 ng/ml NGF, but signaling was suppressed when an NGF concentration of 5 ng/ml was used. Further investigation demonstrated that Nogo-p4 affected TrkA signaling in an NGF concentration-dependent manner. Nogo-p4 suppression of TrkA signaling was strong at low (1 and 5 ng/ml), moderate at intermediate (25 ng/ml), but absent at high (50 and 100 ng/ml) NGF concentrations. NEP1-40 attenuated, and NgR1 overexpression enhanced, Nogo-p4 suppression of TrkA signaling induced by low concentrations of NGF. High but not low concentrations of NGF reduced the formation of NgR1/p75 complexes triggered by Nogo-p4. Nogo-p4 strongly inhibited neurite growth induced by low rather than high concentrations of NGF.</p><p><strong>Conclusion: </strong>Nogo-p4 binding with NgR1 suppresses TrkA signaling induced by low concentrations of NGF in differentiated PC12 cells. Suppression of NGF-induced TrkA signaling may be another mechanism by which Nogo inhibits neurite growth.</p>","PeriodicalId":19171,"journal":{"name":"Neurosignals","volume":"24 1","pages":"25-39"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000442609","citationCount":"1","resultStr":"{\"title\":\"Nogo-p4 Suppresses TrkA Signaling Induced by Low Concentrations of Nerve Growth Factor Through NgR1 in Differentiated PC12 Cells.\",\"authors\":\"You-Ming Fan, Qing-Yuan Huang, Yin-Ai Wu, Alan R Harvey, Qi Cui, Yu-Qi Gao\",\"doi\":\"10.1159/000442609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Regeneration of injured axons in adult mammalian central nervous system (CNS) is not spontaneous. Nogo is a major inhibitory molecule contributing to axon regeneration failure. The molecular mechanisms of Nogo inhibition of axon regeneration are not completely understood. To further investigate the underlying mechanisms, we studied the effects of Nogo-p4, a 25-amino acid core inhibitory fragment of Nogo, on nerve growth factor (NGF)-induced TrkA signaling.</p><p><strong>Methods: </strong>NGF-differentiated PC12 cells were used as cell models. The effects of Nogo-p4 on two key components of TrkA signaling, phosphorylated Erk1/2 and Akt, were analyzed by western blot. Co-immunoprecipitation experiments were performed to detect the formation of NgR1/p75 complexes. Neurite growth was quantified by measuring the neurite length.</p><p><strong>Results: </strong>Nogo-p4 did not significantly affect TrkA signaling induced by 100 ng/ml NGF, but signaling was suppressed when an NGF concentration of 5 ng/ml was used. Further investigation demonstrated that Nogo-p4 affected TrkA signaling in an NGF concentration-dependent manner. Nogo-p4 suppression of TrkA signaling was strong at low (1 and 5 ng/ml), moderate at intermediate (25 ng/ml), but absent at high (50 and 100 ng/ml) NGF concentrations. NEP1-40 attenuated, and NgR1 overexpression enhanced, Nogo-p4 suppression of TrkA signaling induced by low concentrations of NGF. High but not low concentrations of NGF reduced the formation of NgR1/p75 complexes triggered by Nogo-p4. Nogo-p4 strongly inhibited neurite growth induced by low rather than high concentrations of NGF.</p><p><strong>Conclusion: </strong>Nogo-p4 binding with NgR1 suppresses TrkA signaling induced by low concentrations of NGF in differentiated PC12 cells. Suppression of NGF-induced TrkA signaling may be another mechanism by which Nogo inhibits neurite growth.</p>\",\"PeriodicalId\":19171,\"journal\":{\"name\":\"Neurosignals\",\"volume\":\"24 1\",\"pages\":\"25-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000442609\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurosignals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000442609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/6/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurosignals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000442609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/6/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Nogo-p4 Suppresses TrkA Signaling Induced by Low Concentrations of Nerve Growth Factor Through NgR1 in Differentiated PC12 Cells.
Background: Regeneration of injured axons in adult mammalian central nervous system (CNS) is not spontaneous. Nogo is a major inhibitory molecule contributing to axon regeneration failure. The molecular mechanisms of Nogo inhibition of axon regeneration are not completely understood. To further investigate the underlying mechanisms, we studied the effects of Nogo-p4, a 25-amino acid core inhibitory fragment of Nogo, on nerve growth factor (NGF)-induced TrkA signaling.
Methods: NGF-differentiated PC12 cells were used as cell models. The effects of Nogo-p4 on two key components of TrkA signaling, phosphorylated Erk1/2 and Akt, were analyzed by western blot. Co-immunoprecipitation experiments were performed to detect the formation of NgR1/p75 complexes. Neurite growth was quantified by measuring the neurite length.
Results: Nogo-p4 did not significantly affect TrkA signaling induced by 100 ng/ml NGF, but signaling was suppressed when an NGF concentration of 5 ng/ml was used. Further investigation demonstrated that Nogo-p4 affected TrkA signaling in an NGF concentration-dependent manner. Nogo-p4 suppression of TrkA signaling was strong at low (1 and 5 ng/ml), moderate at intermediate (25 ng/ml), but absent at high (50 and 100 ng/ml) NGF concentrations. NEP1-40 attenuated, and NgR1 overexpression enhanced, Nogo-p4 suppression of TrkA signaling induced by low concentrations of NGF. High but not low concentrations of NGF reduced the formation of NgR1/p75 complexes triggered by Nogo-p4. Nogo-p4 strongly inhibited neurite growth induced by low rather than high concentrations of NGF.
Conclusion: Nogo-p4 binding with NgR1 suppresses TrkA signaling induced by low concentrations of NGF in differentiated PC12 cells. Suppression of NGF-induced TrkA signaling may be another mechanism by which Nogo inhibits neurite growth.
期刊介绍:
Neurosignals is an international journal dedicated to publishing original articles and reviews in the field of neuronal communication. Novel findings related to signaling molecules, channels and transporters, pathways and networks that are associated with development and function of the nervous system are welcome. The scope of the journal includes genetics, molecular biology, bioinformatics, (patho)physiology, (patho)biochemistry, pharmacology & toxicology, imaging and clinical neurology & psychiatry. Reported observations should significantly advance our understanding of neuronal signaling in health & disease and be presented in a format applicable to an interdisciplinary readership.