RNA折叠的统计力学建模:从自由能景观到三级结构预测。

Nucleic acids and molecular biology Pub Date : 2012-01-01 Epub Date: 2012-04-07 DOI:10.1007/978-3-642-25740-7_10
Song Cao, Shi-Jie Chen
{"title":"RNA折叠的统计力学建模:从自由能景观到三级结构预测。","authors":"Song Cao,&nbsp;Shi-Jie Chen","doi":"10.1007/978-3-642-25740-7_10","DOIUrl":null,"url":null,"abstract":"<p><p>In spite of the success of computational methods for predicting RNA secondary structure, the problem of predicting RNA tertiary structure folding remains. Low-resolution structural models show promise as they allow for rigorous statistical mechanical computation for the conformational entropies, free energies, and the coarse-grained structures of tertiary folds. Molecular dynamics refinement of coarse-grained structures leads to all-atom 3D structures. Modeling based on statistical mechanics principles also has the unique advantage of predicting the full free energy landscape, including local minima and the global free energy minimum. The energy landscapes combined with the 3D structures form the basis for quantitative predictions of RNA functions. In this chapter, we present an overview of statistical mechanical models for RNA folding and then focus on a recently developed RNA statistical mechanical model -- the <b>Vfold</b> model. The main emphasis is placed on the physics underpinning the models, the computational strategies, and the connections to RNA biology.</p>","PeriodicalId":91585,"journal":{"name":"Nucleic acids and molecular biology","volume":"27 ","pages":"185-212"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-642-25740-7_10","citationCount":"2","resultStr":"{\"title\":\"Statistical mechanical modeling of RNA folding: from free energy landscape to tertiary structural prediction.\",\"authors\":\"Song Cao,&nbsp;Shi-Jie Chen\",\"doi\":\"10.1007/978-3-642-25740-7_10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In spite of the success of computational methods for predicting RNA secondary structure, the problem of predicting RNA tertiary structure folding remains. Low-resolution structural models show promise as they allow for rigorous statistical mechanical computation for the conformational entropies, free energies, and the coarse-grained structures of tertiary folds. Molecular dynamics refinement of coarse-grained structures leads to all-atom 3D structures. Modeling based on statistical mechanics principles also has the unique advantage of predicting the full free energy landscape, including local minima and the global free energy minimum. The energy landscapes combined with the 3D structures form the basis for quantitative predictions of RNA functions. In this chapter, we present an overview of statistical mechanical models for RNA folding and then focus on a recently developed RNA statistical mechanical model -- the <b>Vfold</b> model. The main emphasis is placed on the physics underpinning the models, the computational strategies, and the connections to RNA biology.</p>\",\"PeriodicalId\":91585,\"journal\":{\"name\":\"Nucleic acids and molecular biology\",\"volume\":\"27 \",\"pages\":\"185-212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-642-25740-7_10\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic acids and molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-642-25740-7_10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/4/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acids and molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-642-25740-7_10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/4/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

尽管预测RNA二级结构的计算方法取得了成功,但预测RNA三级结构折叠的问题仍然存在。低分辨率结构模型显示出希望,因为它们允许对构象熵、自由能和第三纪褶皱的粗粒度结构进行严格的统计力学计算。粗粒度结构的分子动力学细化导致全原子三维结构。基于统计力学原理的建模也具有预测完整自由能景观的独特优势,包括局部极小值和全局自由能极小值。结合三维结构的能量景观构成了RNA功能定量预测的基础。在本章中,我们概述了RNA折叠的统计力学模型,然后重点介绍了最近开发的RNA统计力学模型——Vfold模型。主要的重点放在支撑模型的物理学、计算策略以及与RNA生物学的联系上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Statistical mechanical modeling of RNA folding: from free energy landscape to tertiary structural prediction.

Statistical mechanical modeling of RNA folding: from free energy landscape to tertiary structural prediction.

In spite of the success of computational methods for predicting RNA secondary structure, the problem of predicting RNA tertiary structure folding remains. Low-resolution structural models show promise as they allow for rigorous statistical mechanical computation for the conformational entropies, free energies, and the coarse-grained structures of tertiary folds. Molecular dynamics refinement of coarse-grained structures leads to all-atom 3D structures. Modeling based on statistical mechanics principles also has the unique advantage of predicting the full free energy landscape, including local minima and the global free energy minimum. The energy landscapes combined with the 3D structures form the basis for quantitative predictions of RNA functions. In this chapter, we present an overview of statistical mechanical models for RNA folding and then focus on a recently developed RNA statistical mechanical model -- the Vfold model. The main emphasis is placed on the physics underpinning the models, the computational strategies, and the connections to RNA biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信