{"title":"随机缺失变量均值的二阶推断。","authors":"Iván Díaz, Marco Carone, Mark J van der Laan","doi":"10.1515/ijb-2015-0031","DOIUrl":null,"url":null,"abstract":"<p><p>We present a second-order estimator of the mean of a variable subject to missingness, under the missing at random assumption. The estimator improves upon existing methods by using an approximate second-order expansion of the parameter functional, in addition to the first-order expansion employed by standard doubly robust methods. This results in weaker assumptions about the convergence rates necessary to establish consistency, local efficiency, and asymptotic linearity. The general estimation strategy is developed under the targeted minimum loss-based estimation (TMLE) framework. We present a simulation comparing the sensitivity of the first and second-order estimators to the convergence rate of the initial estimators of the outcome regression and missingness score. In our simulation, the second-order TMLE always had a coverage probability equal or closer to the nominal value 0.95, compared to its first-order counterpart. In the best-case scenario, the proposed second-order TMLE had a coverage probability of 0.86 when the first-order TMLE had a coverage probability of zero. We also present a novel first-order estimator inspired by a second-order expansion of the parameter functional. This estimator only requires one-dimensional smoothing, whereas implementation of the second-order TMLE generally requires kernel smoothing on the covariate space. The first-order estimator proposed is expected to have improved finite sample performance compared to existing first-order estimators. In the best-case scenario of our simulation study, the novel first-order TMLE improved the coverage probability from 0 to 0.90. We provide an illustration of our methods using a publicly available dataset to determine the effect of an anticoagulant on health outcomes of patients undergoing percutaneous coronary intervention. We provide R code implementing the proposed estimator.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"12 1","pages":"333-49"},"PeriodicalIF":1.2000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0031","citationCount":"12","resultStr":"{\"title\":\"Second-Order Inference for the Mean of a Variable Missing at Random.\",\"authors\":\"Iván Díaz, Marco Carone, Mark J van der Laan\",\"doi\":\"10.1515/ijb-2015-0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a second-order estimator of the mean of a variable subject to missingness, under the missing at random assumption. The estimator improves upon existing methods by using an approximate second-order expansion of the parameter functional, in addition to the first-order expansion employed by standard doubly robust methods. This results in weaker assumptions about the convergence rates necessary to establish consistency, local efficiency, and asymptotic linearity. The general estimation strategy is developed under the targeted minimum loss-based estimation (TMLE) framework. We present a simulation comparing the sensitivity of the first and second-order estimators to the convergence rate of the initial estimators of the outcome regression and missingness score. In our simulation, the second-order TMLE always had a coverage probability equal or closer to the nominal value 0.95, compared to its first-order counterpart. In the best-case scenario, the proposed second-order TMLE had a coverage probability of 0.86 when the first-order TMLE had a coverage probability of zero. We also present a novel first-order estimator inspired by a second-order expansion of the parameter functional. This estimator only requires one-dimensional smoothing, whereas implementation of the second-order TMLE generally requires kernel smoothing on the covariate space. The first-order estimator proposed is expected to have improved finite sample performance compared to existing first-order estimators. In the best-case scenario of our simulation study, the novel first-order TMLE improved the coverage probability from 0 to 0.90. We provide an illustration of our methods using a publicly available dataset to determine the effect of an anticoagulant on health outcomes of patients undergoing percutaneous coronary intervention. We provide R code implementing the proposed estimator.</p>\",\"PeriodicalId\":49058,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"12 1\",\"pages\":\"333-49\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2015-0031\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2015-0031\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2015-0031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Second-Order Inference for the Mean of a Variable Missing at Random.
We present a second-order estimator of the mean of a variable subject to missingness, under the missing at random assumption. The estimator improves upon existing methods by using an approximate second-order expansion of the parameter functional, in addition to the first-order expansion employed by standard doubly robust methods. This results in weaker assumptions about the convergence rates necessary to establish consistency, local efficiency, and asymptotic linearity. The general estimation strategy is developed under the targeted minimum loss-based estimation (TMLE) framework. We present a simulation comparing the sensitivity of the first and second-order estimators to the convergence rate of the initial estimators of the outcome regression and missingness score. In our simulation, the second-order TMLE always had a coverage probability equal or closer to the nominal value 0.95, compared to its first-order counterpart. In the best-case scenario, the proposed second-order TMLE had a coverage probability of 0.86 when the first-order TMLE had a coverage probability of zero. We also present a novel first-order estimator inspired by a second-order expansion of the parameter functional. This estimator only requires one-dimensional smoothing, whereas implementation of the second-order TMLE generally requires kernel smoothing on the covariate space. The first-order estimator proposed is expected to have improved finite sample performance compared to existing first-order estimators. In the best-case scenario of our simulation study, the novel first-order TMLE improved the coverage probability from 0 to 0.90. We provide an illustration of our methods using a publicly available dataset to determine the effect of an anticoagulant on health outcomes of patients undergoing percutaneous coronary intervention. We provide R code implementing the proposed estimator.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.