豆豆蛋白a介导的细胞骨架破坏对胶质母细胞瘤低密度脂蛋白受体相关蛋白-1内化和细胞表面表达的影响。

Biomarkers in cancer Pub Date : 2016-05-19 eCollection Date: 2016-01-01 DOI:10.4137/BIC.S38894
Samuel Burke Nanni, Jonathan Pratt, David Beauchemin, Khadidja Haidara, Borhane Annabi
{"title":"豆豆蛋白a介导的细胞骨架破坏对胶质母细胞瘤低密度脂蛋白受体相关蛋白-1内化和细胞表面表达的影响。","authors":"Samuel Burke Nanni,&nbsp;Jonathan Pratt,&nbsp;David Beauchemin,&nbsp;Khadidja Haidara,&nbsp;Borhane Annabi","doi":"10.4137/BIC.S38894","DOIUrl":null,"url":null,"abstract":"<p><p>The low-density lipoprotein receptor-related protein 1 (LRP-1) is a multiligand endocytic receptor, which plays a pivotal role in controlling cytoskeleton dynamics during cancer cell migration. Its rapid endocytosis further allows efficient clearance of extracellular ligands. Concanavalin-A (ConA) is a lectin used to trigger in vitro physiological cellular processes, including cytokines secretion, nitric oxide production, and T-lymphocytes activation. Given that ConA exerts part of its effects through cytoskeleton remodeling, we questioned whether it affected LRP-1 expression, intracellular trafficking, and cell surface function in grade IV U87 glioblastoma cells. Using flow cytometry and confocal microscopy, we found that loss of the cell surface 600-kDa mature form of LRP-1 occurs upon ConA treatment. Consequently, internalization of the physiological α2-macroglobulin and the synthetic angiopep-2 ligands of LRP-1 was also decreased. Silencing of known mediators of ConA, such as the membrane type-1 matrix metalloproteinase, and the Toll-like receptors (TLR)-2 and TLR-6 was unable to rescue ConA-mediated LRP-1 expression decrease, implying that the loss of LRP-1 was independent of cell surface relayed signaling. The ConA-mediated reduction in LRP-1 expression was emulated by the actin cytoskeleton-disrupting agent cytochalasin-D, but not by the microtubule inhibitor nocodazole, and required both lysosomal- and ubiquitin-proteasome system-mediated degradation. Our study implies that actin cytoskeleton integrity is required for proper LRP-1 cell surface functions and that impaired trafficking leads to specialized compartmentation and degradation. Our data also strengthen the biomarker role of cell surface LRP-1 functions in the vectorized transport of therapeutic angiopep bioconjugates into brain cancer cells. </p>","PeriodicalId":72377,"journal":{"name":"Biomarkers in cancer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BIC.S38894","citationCount":"8","resultStr":"{\"title\":\"Impact of Concanavalin-A-Mediated Cytoskeleton Disruption on Low-Density Lipoprotein Receptor-Related Protein-1 Internalization and Cell Surface Expression in Glioblastomas.\",\"authors\":\"Samuel Burke Nanni,&nbsp;Jonathan Pratt,&nbsp;David Beauchemin,&nbsp;Khadidja Haidara,&nbsp;Borhane Annabi\",\"doi\":\"10.4137/BIC.S38894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The low-density lipoprotein receptor-related protein 1 (LRP-1) is a multiligand endocytic receptor, which plays a pivotal role in controlling cytoskeleton dynamics during cancer cell migration. Its rapid endocytosis further allows efficient clearance of extracellular ligands. Concanavalin-A (ConA) is a lectin used to trigger in vitro physiological cellular processes, including cytokines secretion, nitric oxide production, and T-lymphocytes activation. Given that ConA exerts part of its effects through cytoskeleton remodeling, we questioned whether it affected LRP-1 expression, intracellular trafficking, and cell surface function in grade IV U87 glioblastoma cells. Using flow cytometry and confocal microscopy, we found that loss of the cell surface 600-kDa mature form of LRP-1 occurs upon ConA treatment. Consequently, internalization of the physiological α2-macroglobulin and the synthetic angiopep-2 ligands of LRP-1 was also decreased. Silencing of known mediators of ConA, such as the membrane type-1 matrix metalloproteinase, and the Toll-like receptors (TLR)-2 and TLR-6 was unable to rescue ConA-mediated LRP-1 expression decrease, implying that the loss of LRP-1 was independent of cell surface relayed signaling. The ConA-mediated reduction in LRP-1 expression was emulated by the actin cytoskeleton-disrupting agent cytochalasin-D, but not by the microtubule inhibitor nocodazole, and required both lysosomal- and ubiquitin-proteasome system-mediated degradation. Our study implies that actin cytoskeleton integrity is required for proper LRP-1 cell surface functions and that impaired trafficking leads to specialized compartmentation and degradation. Our data also strengthen the biomarker role of cell surface LRP-1 functions in the vectorized transport of therapeutic angiopep bioconjugates into brain cancer cells. </p>\",\"PeriodicalId\":72377,\"journal\":{\"name\":\"Biomarkers in cancer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4137/BIC.S38894\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomarkers in cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4137/BIC.S38894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarkers in cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/BIC.S38894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

低密度脂蛋白受体相关蛋白1 (LRP-1)是一种多配体内吞受体,在癌细胞迁移过程中调控细胞骨架动力学起关键作用。它的快速内吞作用进一步允许有效清除细胞外配体。ConA是一种用于触发体外生理细胞过程的凝集素,包括细胞因子分泌、一氧化氮产生和t淋巴细胞激活。鉴于ConA通过细胞骨架重塑发挥部分作用,我们质疑它是否会影响IV级U87胶质母细胞瘤细胞的LRP-1表达、细胞内运输和细胞表面功能。通过流式细胞术和共聚焦显微镜,我们发现在ConA处理后,细胞表面600-kDa成熟形式的LRP-1丢失。因此,生理性α -2巨球蛋白的内化和LRP-1的合成血管内皮素-2配体也减少。沉默已知的ConA介质,如膜1型基质金属蛋白酶和toll样受体(TLR)-2和TLR-6,无法挽救ConA介导的LRP-1表达下降,这表明LRP-1的丧失与细胞表面传递信号无关。cona介导的LRP-1表达的减少可以被肌动蛋白细胞骨架破坏剂cytochalasin-D模拟,但不能被微管抑制剂nocodazole模拟,并且需要溶酶体和泛素蛋白酶体系统介导的降解。我们的研究表明,肌动蛋白细胞骨架的完整性是LRP-1细胞表面正常功能所必需的,而运输受损会导致专门的区隔和降解。我们的数据还加强了细胞表面LRP-1功能在治疗性血管内皮生物偶联物向脑癌细胞矢量运输中的生物标志物作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Impact of Concanavalin-A-Mediated Cytoskeleton Disruption on Low-Density Lipoprotein Receptor-Related Protein-1 Internalization and Cell Surface Expression in Glioblastomas.

Impact of Concanavalin-A-Mediated Cytoskeleton Disruption on Low-Density Lipoprotein Receptor-Related Protein-1 Internalization and Cell Surface Expression in Glioblastomas.

Impact of Concanavalin-A-Mediated Cytoskeleton Disruption on Low-Density Lipoprotein Receptor-Related Protein-1 Internalization and Cell Surface Expression in Glioblastomas.

Impact of Concanavalin-A-Mediated Cytoskeleton Disruption on Low-Density Lipoprotein Receptor-Related Protein-1 Internalization and Cell Surface Expression in Glioblastomas.

The low-density lipoprotein receptor-related protein 1 (LRP-1) is a multiligand endocytic receptor, which plays a pivotal role in controlling cytoskeleton dynamics during cancer cell migration. Its rapid endocytosis further allows efficient clearance of extracellular ligands. Concanavalin-A (ConA) is a lectin used to trigger in vitro physiological cellular processes, including cytokines secretion, nitric oxide production, and T-lymphocytes activation. Given that ConA exerts part of its effects through cytoskeleton remodeling, we questioned whether it affected LRP-1 expression, intracellular trafficking, and cell surface function in grade IV U87 glioblastoma cells. Using flow cytometry and confocal microscopy, we found that loss of the cell surface 600-kDa mature form of LRP-1 occurs upon ConA treatment. Consequently, internalization of the physiological α2-macroglobulin and the synthetic angiopep-2 ligands of LRP-1 was also decreased. Silencing of known mediators of ConA, such as the membrane type-1 matrix metalloproteinase, and the Toll-like receptors (TLR)-2 and TLR-6 was unable to rescue ConA-mediated LRP-1 expression decrease, implying that the loss of LRP-1 was independent of cell surface relayed signaling. The ConA-mediated reduction in LRP-1 expression was emulated by the actin cytoskeleton-disrupting agent cytochalasin-D, but not by the microtubule inhibitor nocodazole, and required both lysosomal- and ubiquitin-proteasome system-mediated degradation. Our study implies that actin cytoskeleton integrity is required for proper LRP-1 cell surface functions and that impaired trafficking leads to specialized compartmentation and degradation. Our data also strengthen the biomarker role of cell surface LRP-1 functions in the vectorized transport of therapeutic angiopep bioconjugates into brain cancer cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信