对受检出限限制的数据的多重归算的使用。

Ofer Harel, Neil Perkins, Enrique F Schisterman
{"title":"对受检出限限制的数据的多重归算的使用。","authors":"Ofer Harel,&nbsp;Neil Perkins,&nbsp;Enrique F Schisterman","doi":"10.4038/sljastats.v5i4.7792","DOIUrl":null,"url":null,"abstract":"<p><p>Missing data due to limit of detection and limit of quantification is a common obstacle in epidemiological and biomedical research. We are interested in methodologies that provide unbiased and efficient estimates of these missing data while using popular statistical software. We describe a multiple imputation (MI) procedure for cross-sectional and longitudinal data which examines the sources of variation of hormones levels throughout the menstrual cycle conditional on specific biomarkers. We describe the rational, procedure, advantages and disadvantages of the multiple imputation procedure. We also provide a comparison to commonly used missing data procedures (complete cases analysis and single imputation). We illustrate our approach using the BioCycle data where we are interested in the effects of Vitamin E and Beta-carotene on Progesterone levels. We also evaluate the longitudinal impact of changes in Vitamin E on Progesterone levels over time. Finaly, we demonstrate the advantages of using MI over complete case analysis or naive single replacement in both cross-sectional and longitudinal analysis where measurements below the limit of quantification (LOQ) are unreported. We also illustrate that if available, inclusion of potentially demined unreliable data below the limit of detection (LOD) improves simple estimation substantially.</p>","PeriodicalId":91408,"journal":{"name":"Sri Lankan journal of applied statistics","volume":"5 4","pages":"227-246"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838401/pdf/nihms752051.pdf","citationCount":"26","resultStr":"{\"title\":\"The Use of Multiple Imputation for Data Subject to Limits of Detection.\",\"authors\":\"Ofer Harel,&nbsp;Neil Perkins,&nbsp;Enrique F Schisterman\",\"doi\":\"10.4038/sljastats.v5i4.7792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Missing data due to limit of detection and limit of quantification is a common obstacle in epidemiological and biomedical research. We are interested in methodologies that provide unbiased and efficient estimates of these missing data while using popular statistical software. We describe a multiple imputation (MI) procedure for cross-sectional and longitudinal data which examines the sources of variation of hormones levels throughout the menstrual cycle conditional on specific biomarkers. We describe the rational, procedure, advantages and disadvantages of the multiple imputation procedure. We also provide a comparison to commonly used missing data procedures (complete cases analysis and single imputation). We illustrate our approach using the BioCycle data where we are interested in the effects of Vitamin E and Beta-carotene on Progesterone levels. We also evaluate the longitudinal impact of changes in Vitamin E on Progesterone levels over time. Finaly, we demonstrate the advantages of using MI over complete case analysis or naive single replacement in both cross-sectional and longitudinal analysis where measurements below the limit of quantification (LOQ) are unreported. We also illustrate that if available, inclusion of potentially demined unreliable data below the limit of detection (LOD) improves simple estimation substantially.</p>\",\"PeriodicalId\":91408,\"journal\":{\"name\":\"Sri Lankan journal of applied statistics\",\"volume\":\"5 4\",\"pages\":\"227-246\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838401/pdf/nihms752051.pdf\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sri Lankan journal of applied statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4038/sljastats.v5i4.7792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/12/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sri Lankan journal of applied statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4038/sljastats.v5i4.7792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/12/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

由于检测限和定量限导致的数据缺失是流行病学和生物医学研究中常见的障碍。我们感兴趣的方法,提供这些缺失的数据的公正和有效的估计,同时使用流行的统计软件。我们描述了横断面和纵向数据的多重输入(MI)程序,该程序检查了整个月经周期中特定生物标志物条件下激素水平变化的来源。阐述了多重归责程序的合理性、程序及其优缺点。我们还提供了常用的缺失数据程序(完整案例分析和单一输入)的比较。我们使用bicycle数据说明我们的方法,我们对维生素E和β -胡萝卜素对黄体酮水平的影响感兴趣。我们还评估了维生素E随时间变化对黄体酮水平的纵向影响。最后,我们展示了在横断面和纵向分析中使用MI优于完整病例分析或单纯单一替代的优势,其中低于定量限制(LOQ)的测量未被报告。我们还说明,如果有可能,包括潜在确定不可靠的数据低于检测限(LOD)大大提高简单的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Use of Multiple Imputation for Data Subject to Limits of Detection.

Missing data due to limit of detection and limit of quantification is a common obstacle in epidemiological and biomedical research. We are interested in methodologies that provide unbiased and efficient estimates of these missing data while using popular statistical software. We describe a multiple imputation (MI) procedure for cross-sectional and longitudinal data which examines the sources of variation of hormones levels throughout the menstrual cycle conditional on specific biomarkers. We describe the rational, procedure, advantages and disadvantages of the multiple imputation procedure. We also provide a comparison to commonly used missing data procedures (complete cases analysis and single imputation). We illustrate our approach using the BioCycle data where we are interested in the effects of Vitamin E and Beta-carotene on Progesterone levels. We also evaluate the longitudinal impact of changes in Vitamin E on Progesterone levels over time. Finaly, we demonstrate the advantages of using MI over complete case analysis or naive single replacement in both cross-sectional and longitudinal analysis where measurements below the limit of quantification (LOQ) are unreported. We also illustrate that if available, inclusion of potentially demined unreliable data below the limit of detection (LOD) improves simple estimation substantially.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信