医学成像中的大数据处理:大规模自动并行计算的迭代重建。

Jae H Lee, Yushu Yao, Uttam Shrestha, Grant T Gullberg, Youngho Seo
{"title":"医学成像中的大数据处理:大规模自动并行计算的迭代重建。","authors":"Jae H Lee,&nbsp;Yushu Yao,&nbsp;Uttam Shrestha,&nbsp;Grant T Gullberg,&nbsp;Youngho Seo","doi":"10.1109/NSSMIC.2014.7430758","DOIUrl":null,"url":null,"abstract":"<p><p>The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting.</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NSSMIC.2014.7430758","citationCount":"3","resultStr":"{\"title\":\"Handling Big Data in Medical Imaging: Iterative Reconstruction with Large-Scale Automated Parallel Computation.\",\"authors\":\"Jae H Lee,&nbsp;Yushu Yao,&nbsp;Uttam Shrestha,&nbsp;Grant T Gullberg,&nbsp;Youngho Seo\",\"doi\":\"10.1109/NSSMIC.2014.7430758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting.</p>\",\"PeriodicalId\":73298,\"journal\":{\"name\":\"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/NSSMIC.2014.7430758\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2014.7430758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2014.7430758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

该项目的主要目标是在Spark/GraphX上实现迭代统计图像重建算法,在这种情况下,最大似然期望最大值(MLEM)用于动态心脏单光子发射计算机断层扫描。这涉及到将算法移植到大型并行计算系统上运行。Spark是一个易于编程的软件平台,可以并行处理大量数据。GraphX是一个运行在Spark之上的图形分析系统,用于并行处理图形和稀疏线性代数运算。在Spark/GraphX中实现MLEM算法的主要优点是,它允许用户在没有并行计算专业知识或计算机科学先验知识的情况下并行化此类计算。在本文中,我们展示了在Spark/GraphX中成功实现的MLEM,并展示了性能收益,目标是最终使其可用于临床环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Handling Big Data in Medical Imaging: Iterative Reconstruction with Large-Scale Automated Parallel Computation.

Handling Big Data in Medical Imaging: Iterative Reconstruction with Large-Scale Automated Parallel Computation.

Handling Big Data in Medical Imaging: Iterative Reconstruction with Large-Scale Automated Parallel Computation.

Handling Big Data in Medical Imaging: Iterative Reconstruction with Large-Scale Automated Parallel Computation.

The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信