对数凹性与强对数凹性综述。

IF 11 Q1 STATISTICS & PROBABILITY
Statistics Surveys Pub Date : 2014-01-01 Epub Date: 2014-12-09 DOI:10.1214/14-SS107
Adrien Saumard, Jon A Wellner
{"title":"对数凹性与强对数凹性综述。","authors":"Adrien Saumard,&nbsp;Jon A Wellner","doi":"10.1214/14-SS107","DOIUrl":null,"url":null,"abstract":"<p><p>We review and formulate results concerning log-concavity and strong-log-concavity in both discrete and continuous settings. We show how preservation of log-concavity and strongly log-concavity on ℝ under convolution follows from a fundamental monotonicity result of Efron (1969). We provide a new proof of Efron's theorem using the recent asymmetric Brascamp-Lieb inequality due to Otto and Menz (2013). Along the way we review connections between log-concavity and other areas of mathematics and statistics, including concentration of measure, log-Sobolev inequalities, convex geometry, MCMC algorithms, Laplace approximations, and machine learning.</p>","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"8 ","pages":"45-114"},"PeriodicalIF":11.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/14-SS107","citationCount":"237","resultStr":"{\"title\":\"Log-Concavity and Strong Log-Concavity: a review.\",\"authors\":\"Adrien Saumard,&nbsp;Jon A Wellner\",\"doi\":\"10.1214/14-SS107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We review and formulate results concerning log-concavity and strong-log-concavity in both discrete and continuous settings. We show how preservation of log-concavity and strongly log-concavity on ℝ under convolution follows from a fundamental monotonicity result of Efron (1969). We provide a new proof of Efron's theorem using the recent asymmetric Brascamp-Lieb inequality due to Otto and Menz (2013). Along the way we review connections between log-concavity and other areas of mathematics and statistics, including concentration of measure, log-Sobolev inequalities, convex geometry, MCMC algorithms, Laplace approximations, and machine learning.</p>\",\"PeriodicalId\":46627,\"journal\":{\"name\":\"Statistics Surveys\",\"volume\":\"8 \",\"pages\":\"45-114\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/14-SS107\",\"citationCount\":\"237\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/14-SS107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/12/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/14-SS107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/12/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 237

摘要

我们回顾并表述了离散和连续两种情况下关于对数凹性和强对数凹性的结果。我们展示了如何从Efron(1969)的一个基本单调性结果出发,在卷积条件下保持对数凹性和强对数凹性。我们使用Otto和Menz(2013)最近提出的不对称Brascamp-Lieb不等式提供了Efron定理的新证明。在此过程中,我们回顾了对数凹性与其他数学和统计学领域之间的联系,包括测度的集中、对数-索博列夫不等式、凸几何、MCMC算法、拉普拉斯近似和机器学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Log-Concavity and Strong Log-Concavity: a review.

Log-Concavity and Strong Log-Concavity: a review.

We review and formulate results concerning log-concavity and strong-log-concavity in both discrete and continuous settings. We show how preservation of log-concavity and strongly log-concavity on ℝ under convolution follows from a fundamental monotonicity result of Efron (1969). We provide a new proof of Efron's theorem using the recent asymmetric Brascamp-Lieb inequality due to Otto and Menz (2013). Along the way we review connections between log-concavity and other areas of mathematics and statistics, including concentration of measure, log-Sobolev inequalities, convex geometry, MCMC algorithms, Laplace approximations, and machine learning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics Surveys
Statistics Surveys STATISTICS & PROBABILITY-
CiteScore
11.70
自引率
0.00%
发文量
5
期刊介绍: Statistics Surveys publishes survey articles in theoretical, computational, and applied statistics. The style of articles may range from reviews of recent research to graduate textbook exposition. Articles may be broad or narrow in scope. The essential requirements are a well specified topic and target audience, together with clear exposition. Statistics Surveys is sponsored by the American Statistical Association, the Bernoulli Society, the Institute of Mathematical Statistics, and by the Statistical Society of Canada.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信