Niccolò P Bassani, Federico Ambrogi, Elia M Biganzoli
{"title":"评估miRNA微阵列平台之间的一致性。","authors":"Niccolò P Bassani, Federico Ambrogi, Elia M Biganzoli","doi":"10.3390/microarrays3040302","DOIUrl":null,"url":null,"abstract":"<p><p>Over the last few years, miRNA microarray platforms have provided great insights into the biological mechanisms underlying the onset and development of several diseases. However, only a few studies have evaluated the concordance between different microarray platforms using methods that took into account measurement error in the data. In this work, we propose the use of a modified version of the Bland-Altman plot to assess agreement between microarray platforms. To this aim, two samples, one renal tumor cell line and a pool of 20 different human normal tissues, were profiled using three different miRNA platforms (Affymetrix, Agilent, Illumina) on triplicate arrays. Intra-platform reliability was assessed by calculating pair-wise concordance correlation coefficients (CCC) between technical replicates and overall concordance correlation coefficient (OCCC) with bootstrap percentile confidence intervals, which revealed moderate-to-good repeatability of all platforms for both samples. Modified Bland-Altman analysis revealed good patterns of concordance for Agilent and Illumina, whereas Affymetrix showed poor-to-moderate agreement for both samples considered. The proposed method is useful to assess agreement between array platforms by modifying the original Bland-Altman plot to let it account for measurement error and bias correction and can be used to assess patterns of concordance between other kinds of arrays other than miRNA microarrays. </p>","PeriodicalId":56355,"journal":{"name":"Microarrays","volume":"3 4","pages":"302-21"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/microarrays3040302","citationCount":"6","resultStr":"{\"title\":\"Assessing Agreement between miRNA Microarray Platforms.\",\"authors\":\"Niccolò P Bassani, Federico Ambrogi, Elia M Biganzoli\",\"doi\":\"10.3390/microarrays3040302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the last few years, miRNA microarray platforms have provided great insights into the biological mechanisms underlying the onset and development of several diseases. However, only a few studies have evaluated the concordance between different microarray platforms using methods that took into account measurement error in the data. In this work, we propose the use of a modified version of the Bland-Altman plot to assess agreement between microarray platforms. To this aim, two samples, one renal tumor cell line and a pool of 20 different human normal tissues, were profiled using three different miRNA platforms (Affymetrix, Agilent, Illumina) on triplicate arrays. Intra-platform reliability was assessed by calculating pair-wise concordance correlation coefficients (CCC) between technical replicates and overall concordance correlation coefficient (OCCC) with bootstrap percentile confidence intervals, which revealed moderate-to-good repeatability of all platforms for both samples. Modified Bland-Altman analysis revealed good patterns of concordance for Agilent and Illumina, whereas Affymetrix showed poor-to-moderate agreement for both samples considered. The proposed method is useful to assess agreement between array platforms by modifying the original Bland-Altman plot to let it account for measurement error and bias correction and can be used to assess patterns of concordance between other kinds of arrays other than miRNA microarrays. </p>\",\"PeriodicalId\":56355,\"journal\":{\"name\":\"Microarrays\",\"volume\":\"3 4\",\"pages\":\"302-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3390/microarrays3040302\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microarrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/microarrays3040302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microarrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microarrays3040302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessing Agreement between miRNA Microarray Platforms.
Over the last few years, miRNA microarray platforms have provided great insights into the biological mechanisms underlying the onset and development of several diseases. However, only a few studies have evaluated the concordance between different microarray platforms using methods that took into account measurement error in the data. In this work, we propose the use of a modified version of the Bland-Altman plot to assess agreement between microarray platforms. To this aim, two samples, one renal tumor cell line and a pool of 20 different human normal tissues, were profiled using three different miRNA platforms (Affymetrix, Agilent, Illumina) on triplicate arrays. Intra-platform reliability was assessed by calculating pair-wise concordance correlation coefficients (CCC) between technical replicates and overall concordance correlation coefficient (OCCC) with bootstrap percentile confidence intervals, which revealed moderate-to-good repeatability of all platforms for both samples. Modified Bland-Altman analysis revealed good patterns of concordance for Agilent and Illumina, whereas Affymetrix showed poor-to-moderate agreement for both samples considered. The proposed method is useful to assess agreement between array platforms by modifying the original Bland-Altman plot to let it account for measurement error and bias correction and can be used to assess patterns of concordance between other kinds of arrays other than miRNA microarrays.
期刊介绍:
High-Throughput (formerly Microarrays, ISSN 2076-3905) is a multidisciplinary peer-reviewed scientific journal that provides an advanced forum for the publication of studies reporting high-dimensional approaches and developments in Life Sciences, Chemistry and related fields. Our aim is to encourage scientists to publish their experimental and theoretical results based on high-throughput techniques as well as computational and statistical tools for data analysis and interpretation. The full experimental or methodological details must be provided so that the results can be reproduced. There is no restriction on the length of the papers. High-Throughput invites submissions covering several topics, including, but not limited to: Microarrays, DNA Sequencing, RNA Sequencing, Protein Identification and Quantification, Cell-based Approaches, Omics Technologies, Imaging, Bioinformatics, Computational Biology/Chemistry, Statistics, Integrative Omics, Drug Discovery and Development, Microfluidics, Lab-on-a-chip, Data Mining, Databases, Multiplex Assays.