Michaela Haider, Thomas Haselgrübler, Alois Sonnleitner, Fritz Aberger, Jan Hesse
{"title":"一种双杂交方法用于基因芯片上特异性mRNA的转录和扩增检测。","authors":"Michaela Haider, Thomas Haselgrübler, Alois Sonnleitner, Fritz Aberger, Jan Hesse","doi":"10.3390/microarrays5010005","DOIUrl":null,"url":null,"abstract":"<p><p>A double-hybridization approach was developed for the enzyme-free detection of specific mRNA of a housekeeping gene. Targeted mRNA was immobilized by hybridization to complementary DNA capture probes spotted onto a microarray. A second hybridization step of Cy5-conjugated label DNA to another section of the mRNA enabled specific labeling of the target. Thus, enzymatic artifacts could be avoided by omitting transcription and amplification steps. This manuscript describes the development of capture probe molecules used in the transcription- and amplification-free analysis of RPLP0 mRNA in isolated total RNA. An increase in specific signal was found with increasing length of the target-specific section of capture probes. Unspecific signal comprising spot autofluorescence and unspecific label binding did not correlate with the capture length. An additional spacer between the specific part of the capture probe and the substrate attachment site increased the signal significantly only on a short capture probe of approximately 30 nt length. </p>","PeriodicalId":56355,"journal":{"name":"Microarrays","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/microarrays5010005","citationCount":"6","resultStr":"{\"title\":\"A Double-Hybridization Approach for the Transcription- and Amplification-Free Detection of Specific mRNA on a Microarray.\",\"authors\":\"Michaela Haider, Thomas Haselgrübler, Alois Sonnleitner, Fritz Aberger, Jan Hesse\",\"doi\":\"10.3390/microarrays5010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A double-hybridization approach was developed for the enzyme-free detection of specific mRNA of a housekeeping gene. Targeted mRNA was immobilized by hybridization to complementary DNA capture probes spotted onto a microarray. A second hybridization step of Cy5-conjugated label DNA to another section of the mRNA enabled specific labeling of the target. Thus, enzymatic artifacts could be avoided by omitting transcription and amplification steps. This manuscript describes the development of capture probe molecules used in the transcription- and amplification-free analysis of RPLP0 mRNA in isolated total RNA. An increase in specific signal was found with increasing length of the target-specific section of capture probes. Unspecific signal comprising spot autofluorescence and unspecific label binding did not correlate with the capture length. An additional spacer between the specific part of the capture probe and the substrate attachment site increased the signal significantly only on a short capture probe of approximately 30 nt length. </p>\",\"PeriodicalId\":56355,\"journal\":{\"name\":\"Microarrays\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3390/microarrays5010005\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microarrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/microarrays5010005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microarrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microarrays5010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Double-Hybridization Approach for the Transcription- and Amplification-Free Detection of Specific mRNA on a Microarray.
A double-hybridization approach was developed for the enzyme-free detection of specific mRNA of a housekeeping gene. Targeted mRNA was immobilized by hybridization to complementary DNA capture probes spotted onto a microarray. A second hybridization step of Cy5-conjugated label DNA to another section of the mRNA enabled specific labeling of the target. Thus, enzymatic artifacts could be avoided by omitting transcription and amplification steps. This manuscript describes the development of capture probe molecules used in the transcription- and amplification-free analysis of RPLP0 mRNA in isolated total RNA. An increase in specific signal was found with increasing length of the target-specific section of capture probes. Unspecific signal comprising spot autofluorescence and unspecific label binding did not correlate with the capture length. An additional spacer between the specific part of the capture probe and the substrate attachment site increased the signal significantly only on a short capture probe of approximately 30 nt length.
期刊介绍:
High-Throughput (formerly Microarrays, ISSN 2076-3905) is a multidisciplinary peer-reviewed scientific journal that provides an advanced forum for the publication of studies reporting high-dimensional approaches and developments in Life Sciences, Chemistry and related fields. Our aim is to encourage scientists to publish their experimental and theoretical results based on high-throughput techniques as well as computational and statistical tools for data analysis and interpretation. The full experimental or methodological details must be provided so that the results can be reproduced. There is no restriction on the length of the papers. High-Throughput invites submissions covering several topics, including, but not limited to: Microarrays, DNA Sequencing, RNA Sequencing, Protein Identification and Quantification, Cell-based Approaches, Omics Technologies, Imaging, Bioinformatics, Computational Biology/Chemistry, Statistics, Integrative Omics, Drug Discovery and Development, Microfluidics, Lab-on-a-chip, Data Mining, Databases, Multiplex Assays.