临床访谈中抑郁症的多模态检测。

Hamdi Dibeklioğlu, Zakia Hammal, Ying Yang, Jeffrey F Cohn
{"title":"临床访谈中抑郁症的多模态检测。","authors":"Hamdi Dibeklioğlu,&nbsp;Zakia Hammal,&nbsp;Ying Yang,&nbsp;Jeffrey F Cohn","doi":"10.1145/2818346.2820776","DOIUrl":null,"url":null,"abstract":"<p><p>Current methods for depression assessment depend almost entirely on clinical interview or self-report ratings. Such measures lack systematic and efficient ways of incorporating behavioral observations that are strong indicators of psychological disorder. We compared a clinical interview of depression severity with automatic measurement in 48 participants undergoing treatment for depression. Interviews were obtained at 7-week intervals on up to four occasions. Following standard cut-offs, participants at each session were classified as remitted, intermediate, or depressed. Logistic regression classifiers using leave-one-out validation were compared for facial movement dynamics, head movement dynamics, and vocal prosody individually and in combination. Accuracy (remitted versus depressed) for facial movement dynamics was higher than that for head movement dynamics; and each was substantially higher than that for vocal prosody. Accuracy for all three modalities together reached 88.93%, exceeding that for any single modality or pair of modalities. These findings suggest that automatic detection of depression from behavioral indicators is feasible and that multimodal measures afford most powerful detection.</p>","PeriodicalId":74508,"journal":{"name":"Proceedings of the ... ACM International Conference on Multimodal Interaction. ICMI (Conference)","volume":"2015 ","pages":"307-310"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/2818346.2820776","citationCount":"72","resultStr":"{\"title\":\"Multimodal Detection of Depression in Clinical Interviews.\",\"authors\":\"Hamdi Dibeklioğlu,&nbsp;Zakia Hammal,&nbsp;Ying Yang,&nbsp;Jeffrey F Cohn\",\"doi\":\"10.1145/2818346.2820776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current methods for depression assessment depend almost entirely on clinical interview or self-report ratings. Such measures lack systematic and efficient ways of incorporating behavioral observations that are strong indicators of psychological disorder. We compared a clinical interview of depression severity with automatic measurement in 48 participants undergoing treatment for depression. Interviews were obtained at 7-week intervals on up to four occasions. Following standard cut-offs, participants at each session were classified as remitted, intermediate, or depressed. Logistic regression classifiers using leave-one-out validation were compared for facial movement dynamics, head movement dynamics, and vocal prosody individually and in combination. Accuracy (remitted versus depressed) for facial movement dynamics was higher than that for head movement dynamics; and each was substantially higher than that for vocal prosody. Accuracy for all three modalities together reached 88.93%, exceeding that for any single modality or pair of modalities. These findings suggest that automatic detection of depression from behavioral indicators is feasible and that multimodal measures afford most powerful detection.</p>\",\"PeriodicalId\":74508,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Multimodal Interaction. ICMI (Conference)\",\"volume\":\"2015 \",\"pages\":\"307-310\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/2818346.2820776\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Multimodal Interaction. ICMI (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2818346.2820776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Multimodal Interaction. ICMI (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818346.2820776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

目前的抑郁症评估方法几乎完全依赖于临床访谈或自我报告评分。这些措施缺乏系统和有效的方法来纳入行为观察,而行为观察是心理障碍的有力指标。我们比较了48名接受抑郁症治疗的参与者的抑郁严重程度的临床访谈和自动测量。每隔7周进行4次访谈。按照标准的临界值,每次会议的参与者被分为轻度、中度和抑郁。使用留一验证的逻辑回归分类器对面部运动动态、头部运动动态和声乐韵律单独和组合进行了比较。面部运动动态的准确性(缓解与压抑)高于头部运动动态;每一项都明显高于声乐韵律。这三种模式的准确率达到了88.93%,超过了任何单一模式或对模式的准确率。这些发现表明,从行为指标自动检测抑郁症是可行的,多模式的措施提供了最有效的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal Detection of Depression in Clinical Interviews.

Current methods for depression assessment depend almost entirely on clinical interview or self-report ratings. Such measures lack systematic and efficient ways of incorporating behavioral observations that are strong indicators of psychological disorder. We compared a clinical interview of depression severity with automatic measurement in 48 participants undergoing treatment for depression. Interviews were obtained at 7-week intervals on up to four occasions. Following standard cut-offs, participants at each session were classified as remitted, intermediate, or depressed. Logistic regression classifiers using leave-one-out validation were compared for facial movement dynamics, head movement dynamics, and vocal prosody individually and in combination. Accuracy (remitted versus depressed) for facial movement dynamics was higher than that for head movement dynamics; and each was substantially higher than that for vocal prosody. Accuracy for all three modalities together reached 88.93%, exceeding that for any single modality or pair of modalities. These findings suggest that automatic detection of depression from behavioral indicators is feasible and that multimodal measures afford most powerful detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信