[心肌电导率病理分布导致心律失常的形成机制]。

Biofizika Pub Date : 2016-03-01
I N Vasserman, V P Matveenko, I N Shardakov, A P Shestakov
{"title":"[心肌电导率病理分布导致心律失常的形成机制]。","authors":"I N Vasserman,&nbsp;V P Matveenko,&nbsp;I N Shardakov,&nbsp;A P Shestakov","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Two mechanisms responsible for the emergence of arrhythmia are known: a change of part of the cells to a self-oscillatory mode and generation of circulating waves. In this paper, we investigate the generation mechanism of the circulating waves using the unidirectional block. One of the variants of its realization is a narrow gap between two non-conducting regions. Implementation of this mechanism in the human heart turns out to be impossible, since in the heart in which the duration of cardiac action potential lasts 0.3 s and the velocity of wave propagation is equal to 33 cm/s, the minimal length of the pathway for wave circulation is approximately 10 cm, while the distance between the ventricular apex and atrioventricular septal is, on the average, 8 cm. Therefore, that inhomogeneity cannot exist at the scale of human heart. To adapt this mechanism to the size of the human heart, we introduce into the scheme the regions with low conductivity, which provide slow propagation of the wave. The value of conductivity is chosen based on the results of evaluation of the \"conductivity-wave velocity\" correlation. The analysis of wave propagation through the boundary between two regions with different conductivities has shown that the refractory period depends on the conductivity ratio. To minimize this dependence we introduce the transition zone, in which conductivity changes linearly from some normal value to a reduced one. This allowed us to generate a 12-mm inhomogeneity area, provoking the appearance of the circulating wave.</p>","PeriodicalId":8942,"journal":{"name":"Biofizika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Mechanism of Formation of Cardiac Arrhythmia Due to Pathological Distribution of Myocardium Conductivity].\",\"authors\":\"I N Vasserman,&nbsp;V P Matveenko,&nbsp;I N Shardakov,&nbsp;A P Shestakov\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two mechanisms responsible for the emergence of arrhythmia are known: a change of part of the cells to a self-oscillatory mode and generation of circulating waves. In this paper, we investigate the generation mechanism of the circulating waves using the unidirectional block. One of the variants of its realization is a narrow gap between two non-conducting regions. Implementation of this mechanism in the human heart turns out to be impossible, since in the heart in which the duration of cardiac action potential lasts 0.3 s and the velocity of wave propagation is equal to 33 cm/s, the minimal length of the pathway for wave circulation is approximately 10 cm, while the distance between the ventricular apex and atrioventricular septal is, on the average, 8 cm. Therefore, that inhomogeneity cannot exist at the scale of human heart. To adapt this mechanism to the size of the human heart, we introduce into the scheme the regions with low conductivity, which provide slow propagation of the wave. The value of conductivity is chosen based on the results of evaluation of the \\\"conductivity-wave velocity\\\" correlation. The analysis of wave propagation through the boundary between two regions with different conductivities has shown that the refractory period depends on the conductivity ratio. To minimize this dependence we introduce the transition zone, in which conductivity changes linearly from some normal value to a reduced one. This allowed us to generate a 12-mm inhomogeneity area, provoking the appearance of the circulating wave.</p>\",\"PeriodicalId\":8942,\"journal\":{\"name\":\"Biofizika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofizika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofizika","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心律失常发生的两种机制是已知的:部分细胞改变为自振荡模式和循环波的产生。本文利用单向块体研究了循环波的产生机理。其实现的一种变体是两个非导电区域之间的窄间隙。这一机制在人类心脏中是不可能实现的,因为在心脏中,动作电位持续时间为0.3秒,波传播速度为33厘米/秒,波循环途径的最小长度约为10厘米,而心室心尖和房室间隔之间的距离平均为8厘米。因此,这种不均匀性不可能存在于人类心脏的尺度上。为了使这种机制适应人类心脏的大小,我们在方案中引入了低电导率的区域,这些区域提供了波的缓慢传播。电导率的取值是根据“电导率-波速”相关性的评价结果来确定的。对两个不同电导率区域之间的边界进行的波传播分析表明,不应期取决于电导率比。为了最小化这种依赖性,我们引入了过渡区,其中电导率从某个正常值线性地变化到一个降低的值。这使我们能够产生一个12毫米的不均匀区域,引发循环波的出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Mechanism of Formation of Cardiac Arrhythmia Due to Pathological Distribution of Myocardium Conductivity].

Two mechanisms responsible for the emergence of arrhythmia are known: a change of part of the cells to a self-oscillatory mode and generation of circulating waves. In this paper, we investigate the generation mechanism of the circulating waves using the unidirectional block. One of the variants of its realization is a narrow gap between two non-conducting regions. Implementation of this mechanism in the human heart turns out to be impossible, since in the heart in which the duration of cardiac action potential lasts 0.3 s and the velocity of wave propagation is equal to 33 cm/s, the minimal length of the pathway for wave circulation is approximately 10 cm, while the distance between the ventricular apex and atrioventricular septal is, on the average, 8 cm. Therefore, that inhomogeneity cannot exist at the scale of human heart. To adapt this mechanism to the size of the human heart, we introduce into the scheme the regions with low conductivity, which provide slow propagation of the wave. The value of conductivity is chosen based on the results of evaluation of the "conductivity-wave velocity" correlation. The analysis of wave propagation through the boundary between two regions with different conductivities has shown that the refractory period depends on the conductivity ratio. To minimize this dependence we introduce the transition zone, in which conductivity changes linearly from some normal value to a reduced one. This allowed us to generate a 12-mm inhomogeneity area, provoking the appearance of the circulating wave.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信