多序列比对与基序发现的凸原子范数方法。

Ian E H Yen, Xin Lin, Jiong Zhang, Pradeep Ravikumar, Inderjit S Dhillon
{"title":"多序列比对与基序发现的凸原子范数方法。","authors":"Ian E H Yen,&nbsp;Xin Lin,&nbsp;Jiong Zhang,&nbsp;Pradeep Ravikumar,&nbsp;Inderjit S Dhillon","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple Sequence Alignment and Motif Discovery, known as NP-hard problems, are two fundamental tasks in Bioinformatics. Existing approaches to these two problems are based on either local search methods such as Expectation Maximization (EM), Gibbs Sampling or greedy heuristic methods. In this work, we develop a convex relaxation approach to both problems based on the recent concept of atomic norm and develop a new algorithm, termed Greedy Direction Method of Multiplier, for solving the convex relaxation with two convex atomic constraints. Experiments show that our convex relaxation approach produces solutions of higher quality than those standard tools widely-used in Bioinformatics community on the Multiple Sequence Alignment and Motif Discovery problems.</p>","PeriodicalId":89793,"journal":{"name":"JMLR workshop and conference proceedings","volume":"48 ","pages":"2272-2280"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993214/pdf/nihms808905.pdf","citationCount":"0","resultStr":"{\"title\":\"A Convex Atomic-Norm Approach to Multiple Sequence Alignment and Motif Discovery.\",\"authors\":\"Ian E H Yen,&nbsp;Xin Lin,&nbsp;Jiong Zhang,&nbsp;Pradeep Ravikumar,&nbsp;Inderjit S Dhillon\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple Sequence Alignment and Motif Discovery, known as NP-hard problems, are two fundamental tasks in Bioinformatics. Existing approaches to these two problems are based on either local search methods such as Expectation Maximization (EM), Gibbs Sampling or greedy heuristic methods. In this work, we develop a convex relaxation approach to both problems based on the recent concept of atomic norm and develop a new algorithm, termed Greedy Direction Method of Multiplier, for solving the convex relaxation with two convex atomic constraints. Experiments show that our convex relaxation approach produces solutions of higher quality than those standard tools widely-used in Bioinformatics community on the Multiple Sequence Alignment and Motif Discovery problems.</p>\",\"PeriodicalId\":89793,\"journal\":{\"name\":\"JMLR workshop and conference proceedings\",\"volume\":\"48 \",\"pages\":\"2272-2280\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993214/pdf/nihms808905.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMLR workshop and conference proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMLR workshop and conference proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多序列比对和Motif发现是生物信息学的两个基本问题,被称为np难题。现有的解决这两个问题的方法要么是基于期望最大化(EM)、吉布斯抽样等局部搜索方法,要么是基于贪婪启发式方法。在这项工作中,我们基于原子范数的最新概念开发了一种凸松弛方法来解决这两个问题,并开发了一种新的算法,称为贪心乘法器方向法,用于解决具有两个凸原子约束的凸松弛问题。实验表明,我们的凸松弛方法比生物信息学界广泛使用的标准工具在多序列比对和Motif发现问题上产生更高质量的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Convex Atomic-Norm Approach to Multiple Sequence Alignment and Motif Discovery.

A Convex Atomic-Norm Approach to Multiple Sequence Alignment and Motif Discovery.

A Convex Atomic-Norm Approach to Multiple Sequence Alignment and Motif Discovery.

Multiple Sequence Alignment and Motif Discovery, known as NP-hard problems, are two fundamental tasks in Bioinformatics. Existing approaches to these two problems are based on either local search methods such as Expectation Maximization (EM), Gibbs Sampling or greedy heuristic methods. In this work, we develop a convex relaxation approach to both problems based on the recent concept of atomic norm and develop a new algorithm, termed Greedy Direction Method of Multiplier, for solving the convex relaxation with two convex atomic constraints. Experiments show that our convex relaxation approach produces solutions of higher quality than those standard tools widely-used in Bioinformatics community on the Multiple Sequence Alignment and Motif Discovery problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信