A Fadda, M Schirra, S D'Aquino, Q Migheli, V Borzatta, G Delogu
{"title":"b -环糊精-硫苯达唑-胡椒酰丁醇超分子复合物的制备及其对接种后甜枣蓝绿霉腐病的抑制作用。","authors":"A Fadda, M Schirra, S D'Aquino, Q Migheli, V Borzatta, G Delogu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The supramolecular complex of β-cyclodextrin-thiabendazole-piperony butoxide (βCD-TBZ/PBO) was prepared and its structure was characterized by 1H NMR. Additionally, the antifungal activity of βCD-TBZ/PBO was investigated in comparison with the commercially available thiabendazole (TBZ) fungicide by in vitro tests and on artificially inoculated 'Okitsu' satsuma fruit dipped in water at 20 degrees C or at 50 degrees C to control postharvest blue (Penicillium italicum) and green mould (P. digitatum). β-CD-TBZ/PBO is stable for several months when stored as powder in a dark bottle. At pH 7.0 the water solubility of the βCD-TBZ/PBO complex was consistently higher than free TBZ. Water dip at 20 degrees C did not affect decay incidence caused by blue mould but favoured the development of green mould during 4-8 days of storage at 20 degrees C with respect to untreated (control) fruit. Water at 50 degrees C effectively reduced the incidence of blue mould and totally suppressed green mould during the first 4 days but lost its efficacy afterwards. By contrast, both TBZ and βCD-TBZ/PBO had a lasting effect and were equally effective in controlling green and blue mould decay when applied at 20 degrees C and 60 mg L(-1) active ingredient (a.i.). When applied at 50 degrees C and 20 mg L(-1) a.i. the activity of the complex against blue mould was inferior than the corresponding treatment with TBZ. In vitro assays revealed a significant effectiveness of βCD-TBZ/PBO complex at low concentration compared to commercial formulation of TBZ.</p>","PeriodicalId":10565,"journal":{"name":"Communications in agricultural and applied biological sciences","volume":"80 3","pages":"513-21"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PREPARATION OF B-CYCLODEXTRIN-THIABENDAZOLE-PIPERONYL BUTOXIDE SUPRAMOLECULAR COMPLEX AND ITS ACTIVITY AGAINST BLUE AND GREEN MOULD DECAY ON INOCULATED SATSUMA FRUIT.\",\"authors\":\"A Fadda, M Schirra, S D'Aquino, Q Migheli, V Borzatta, G Delogu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The supramolecular complex of β-cyclodextrin-thiabendazole-piperony butoxide (βCD-TBZ/PBO) was prepared and its structure was characterized by 1H NMR. Additionally, the antifungal activity of βCD-TBZ/PBO was investigated in comparison with the commercially available thiabendazole (TBZ) fungicide by in vitro tests and on artificially inoculated 'Okitsu' satsuma fruit dipped in water at 20 degrees C or at 50 degrees C to control postharvest blue (Penicillium italicum) and green mould (P. digitatum). β-CD-TBZ/PBO is stable for several months when stored as powder in a dark bottle. At pH 7.0 the water solubility of the βCD-TBZ/PBO complex was consistently higher than free TBZ. Water dip at 20 degrees C did not affect decay incidence caused by blue mould but favoured the development of green mould during 4-8 days of storage at 20 degrees C with respect to untreated (control) fruit. Water at 50 degrees C effectively reduced the incidence of blue mould and totally suppressed green mould during the first 4 days but lost its efficacy afterwards. By contrast, both TBZ and βCD-TBZ/PBO had a lasting effect and were equally effective in controlling green and blue mould decay when applied at 20 degrees C and 60 mg L(-1) active ingredient (a.i.). When applied at 50 degrees C and 20 mg L(-1) a.i. the activity of the complex against blue mould was inferior than the corresponding treatment with TBZ. In vitro assays revealed a significant effectiveness of βCD-TBZ/PBO complex at low concentration compared to commercial formulation of TBZ.</p>\",\"PeriodicalId\":10565,\"journal\":{\"name\":\"Communications in agricultural and applied biological sciences\",\"volume\":\"80 3\",\"pages\":\"513-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in agricultural and applied biological sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in agricultural and applied biological sciences","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PREPARATION OF B-CYCLODEXTRIN-THIABENDAZOLE-PIPERONYL BUTOXIDE SUPRAMOLECULAR COMPLEX AND ITS ACTIVITY AGAINST BLUE AND GREEN MOULD DECAY ON INOCULATED SATSUMA FRUIT.
The supramolecular complex of β-cyclodextrin-thiabendazole-piperony butoxide (βCD-TBZ/PBO) was prepared and its structure was characterized by 1H NMR. Additionally, the antifungal activity of βCD-TBZ/PBO was investigated in comparison with the commercially available thiabendazole (TBZ) fungicide by in vitro tests and on artificially inoculated 'Okitsu' satsuma fruit dipped in water at 20 degrees C or at 50 degrees C to control postharvest blue (Penicillium italicum) and green mould (P. digitatum). β-CD-TBZ/PBO is stable for several months when stored as powder in a dark bottle. At pH 7.0 the water solubility of the βCD-TBZ/PBO complex was consistently higher than free TBZ. Water dip at 20 degrees C did not affect decay incidence caused by blue mould but favoured the development of green mould during 4-8 days of storage at 20 degrees C with respect to untreated (control) fruit. Water at 50 degrees C effectively reduced the incidence of blue mould and totally suppressed green mould during the first 4 days but lost its efficacy afterwards. By contrast, both TBZ and βCD-TBZ/PBO had a lasting effect and were equally effective in controlling green and blue mould decay when applied at 20 degrees C and 60 mg L(-1) active ingredient (a.i.). When applied at 50 degrees C and 20 mg L(-1) a.i. the activity of the complex against blue mould was inferior than the corresponding treatment with TBZ. In vitro assays revealed a significant effectiveness of βCD-TBZ/PBO complex at low concentration compared to commercial formulation of TBZ.