{"title":"适体微阵列——现状与未来展望。","authors":"Martin Witt, Johanna-Gabriela Walter, Frank Stahl","doi":"10.3390/microarrays4020115","DOIUrl":null,"url":null,"abstract":"<p><p>Microarray technologies are state of the art in biological research, which requires fast genome, proteome and transcriptome analysis technologies. Often antibodies are applied in protein microarrays as proteomic tools. Since the generation of antibodies against toxic targets or small molecules including organic compounds remains challenging the use of antibodies may be limited in this context. In contrast to this, aptamer microarrays provide alternative techniques to circumvent these limitations. In this article we review the latest developments in aptamer microarray technology. We discuss similarities and differences between DNA and aptamer microarrays and shed light on the post synthesis immobilization of aptamers including corresponding effects on the microarray performance. Finally, we highlight current limitations and future prospects of aptamer microarray technology. </p>","PeriodicalId":56355,"journal":{"name":"Microarrays","volume":"4 2","pages":"115-32"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/microarrays4020115","citationCount":"47","resultStr":"{\"title\":\"Aptamer Microarrays-Current Status and Future Prospects.\",\"authors\":\"Martin Witt, Johanna-Gabriela Walter, Frank Stahl\",\"doi\":\"10.3390/microarrays4020115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microarray technologies are state of the art in biological research, which requires fast genome, proteome and transcriptome analysis technologies. Often antibodies are applied in protein microarrays as proteomic tools. Since the generation of antibodies against toxic targets or small molecules including organic compounds remains challenging the use of antibodies may be limited in this context. In contrast to this, aptamer microarrays provide alternative techniques to circumvent these limitations. In this article we review the latest developments in aptamer microarray technology. We discuss similarities and differences between DNA and aptamer microarrays and shed light on the post synthesis immobilization of aptamers including corresponding effects on the microarray performance. Finally, we highlight current limitations and future prospects of aptamer microarray technology. </p>\",\"PeriodicalId\":56355,\"journal\":{\"name\":\"Microarrays\",\"volume\":\"4 2\",\"pages\":\"115-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3390/microarrays4020115\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microarrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/microarrays4020115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microarrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microarrays4020115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aptamer Microarrays-Current Status and Future Prospects.
Microarray technologies are state of the art in biological research, which requires fast genome, proteome and transcriptome analysis technologies. Often antibodies are applied in protein microarrays as proteomic tools. Since the generation of antibodies against toxic targets or small molecules including organic compounds remains challenging the use of antibodies may be limited in this context. In contrast to this, aptamer microarrays provide alternative techniques to circumvent these limitations. In this article we review the latest developments in aptamer microarray technology. We discuss similarities and differences between DNA and aptamer microarrays and shed light on the post synthesis immobilization of aptamers including corresponding effects on the microarray performance. Finally, we highlight current limitations and future prospects of aptamer microarray technology.
期刊介绍:
High-Throughput (formerly Microarrays, ISSN 2076-3905) is a multidisciplinary peer-reviewed scientific journal that provides an advanced forum for the publication of studies reporting high-dimensional approaches and developments in Life Sciences, Chemistry and related fields. Our aim is to encourage scientists to publish their experimental and theoretical results based on high-throughput techniques as well as computational and statistical tools for data analysis and interpretation. The full experimental or methodological details must be provided so that the results can be reproduced. There is no restriction on the length of the papers. High-Throughput invites submissions covering several topics, including, but not limited to: Microarrays, DNA Sequencing, RNA Sequencing, Protein Identification and Quantification, Cell-based Approaches, Omics Technologies, Imaging, Bioinformatics, Computational Biology/Chemistry, Statistics, Integrative Omics, Drug Discovery and Development, Microfluidics, Lab-on-a-chip, Data Mining, Databases, Multiplex Assays.