合成Kinome微阵列数据发生器。

Farhad Maleki, Anthony Kusalik
{"title":"合成Kinome微阵列数据发生器。","authors":"Farhad Maleki,&nbsp;Anthony Kusalik","doi":"10.3390/microarrays4040432","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular pathways involve the phosphorylation and dephosphorylation of proteins. Peptide microarrays called kinome arrays facilitate the measurement of the phosphorylation activity of hundreds of proteins in a single experiment. Analyzing the data from kinome microarrays is a multi-step process. Typically, various techniques are possible for a particular step, and it is necessary to compare and evaluate them. Such evaluations require data for which correct analysis results are known. Unfortunately, such kinome data is not readily available in the community. Further, there are no established techniques for creating artificial kinome datasets with known results and with the same characteristics as real kinome datasets. In this paper, a methodology for generating synthetic kinome array data is proposed. The methodology relies on actual intensity measurements from kinome microarray experiments and preserves their subtle characteristics. The utility of the methodology is demonstrated by evaluating methods for eliminating heterogeneous variance in kinome microarray data. Phosphorylation intensities from kinome microarrays often exhibit such heterogeneous variance and its presence can negatively impact downstream statistical techniques that rely on homogeneity of variance. It is shown that using the output from the proposed synthetic data generator, it is possible to critically compare two variance stabilization methods. </p>","PeriodicalId":56355,"journal":{"name":"Microarrays","volume":"4 4","pages":"432-53"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/microarrays4040432","citationCount":"4","resultStr":"{\"title\":\"A Synthetic Kinome Microarray Data Generator.\",\"authors\":\"Farhad Maleki,&nbsp;Anthony Kusalik\",\"doi\":\"10.3390/microarrays4040432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellular pathways involve the phosphorylation and dephosphorylation of proteins. Peptide microarrays called kinome arrays facilitate the measurement of the phosphorylation activity of hundreds of proteins in a single experiment. Analyzing the data from kinome microarrays is a multi-step process. Typically, various techniques are possible for a particular step, and it is necessary to compare and evaluate them. Such evaluations require data for which correct analysis results are known. Unfortunately, such kinome data is not readily available in the community. Further, there are no established techniques for creating artificial kinome datasets with known results and with the same characteristics as real kinome datasets. In this paper, a methodology for generating synthetic kinome array data is proposed. The methodology relies on actual intensity measurements from kinome microarray experiments and preserves their subtle characteristics. The utility of the methodology is demonstrated by evaluating methods for eliminating heterogeneous variance in kinome microarray data. Phosphorylation intensities from kinome microarrays often exhibit such heterogeneous variance and its presence can negatively impact downstream statistical techniques that rely on homogeneity of variance. It is shown that using the output from the proposed synthetic data generator, it is possible to critically compare two variance stabilization methods. </p>\",\"PeriodicalId\":56355,\"journal\":{\"name\":\"Microarrays\",\"volume\":\"4 4\",\"pages\":\"432-53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3390/microarrays4040432\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microarrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/microarrays4040432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microarrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microarrays4040432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

细胞通路包括蛋白质的磷酸化和去磷酸化。称为kinome阵列的肽微阵列有助于在单个实验中测量数百种蛋白质的磷酸化活性。分析基因体微阵列的数据是一个多步骤的过程。通常,对于特定的步骤可能使用各种技术,并且有必要对它们进行比较和评估。这种评价需要已知正确分析结果的数据。不幸的是,这样的基因组数据在社区中并不容易获得。此外,目前还没有成熟的技术来创建具有已知结果和与真实基因组数据集相同特征的人工基因组数据集。本文提出了一种合成基因组阵列数据的生成方法。该方法依赖于基因体微阵列实验的实际强度测量,并保留了它们的微妙特征。该方法的效用是通过评估消除异质变异的方法在基因体微阵列数据证明。来自基因体微阵列的磷酸化强度经常表现出这种异质性,它的存在会对依赖方差同质性的下游统计技术产生负面影响。结果表明,使用所提出的合成数据生成器的输出,可以对两种方差稳定方法进行严格比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Synthetic Kinome Microarray Data Generator.

A Synthetic Kinome Microarray Data Generator.

A Synthetic Kinome Microarray Data Generator.

A Synthetic Kinome Microarray Data Generator.

Cellular pathways involve the phosphorylation and dephosphorylation of proteins. Peptide microarrays called kinome arrays facilitate the measurement of the phosphorylation activity of hundreds of proteins in a single experiment. Analyzing the data from kinome microarrays is a multi-step process. Typically, various techniques are possible for a particular step, and it is necessary to compare and evaluate them. Such evaluations require data for which correct analysis results are known. Unfortunately, such kinome data is not readily available in the community. Further, there are no established techniques for creating artificial kinome datasets with known results and with the same characteristics as real kinome datasets. In this paper, a methodology for generating synthetic kinome array data is proposed. The methodology relies on actual intensity measurements from kinome microarray experiments and preserves their subtle characteristics. The utility of the methodology is demonstrated by evaluating methods for eliminating heterogeneous variance in kinome microarray data. Phosphorylation intensities from kinome microarrays often exhibit such heterogeneous variance and its presence can negatively impact downstream statistical techniques that rely on homogeneity of variance. It is shown that using the output from the proposed synthetic data generator, it is possible to critically compare two variance stabilization methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊介绍: High-Throughput (formerly Microarrays, ISSN 2076-3905) is a multidisciplinary peer-reviewed scientific journal that provides an advanced forum for the publication of studies reporting high-dimensional approaches and developments in Life Sciences, Chemistry and related fields. Our aim is to encourage scientists to publish their experimental and theoretical results based on high-throughput techniques as well as computational and statistical tools for data analysis and interpretation. The full experimental or methodological details must be provided so that the results can be reproduced. There is no restriction on the length of the papers. High-Throughput invites submissions covering several topics, including, but not limited to: Microarrays, DNA Sequencing, RNA Sequencing, Protein Identification and Quantification, Cell-based Approaches, Omics Technologies, Imaging, Bioinformatics, Computational Biology/Chemistry, Statistics, Integrative Omics, Drug Discovery and Development, Microfluidics, Lab-on-a-chip, Data Mining, Databases, Multiplex Assays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信