{"title":"使用集成机器学习的最优空间预测。","authors":"Molly Margaret Davies, Mark J van der Laan","doi":"10.1515/ijb-2014-0060","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial prediction is an important problem in many scientific disciplines. Super Learner is an ensemble prediction approach related to stacked generalization that uses cross-validation to search for the optimal predictor amongst all convex combinations of a heterogeneous candidate set. It has been applied to non-spatial data, where theoretical results demonstrate it will perform asymptotically at least as well as the best candidate under consideration. We review these optimality properties and discuss the assumptions required in order for them to hold for spatial prediction problems. We present results of a simulation study confirming Super Learner works well in practice under a variety of sample sizes, sampling designs, and data-generating functions. We also apply Super Learner to a real world dataset.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"12 1","pages":"179-201"},"PeriodicalIF":1.2000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2014-0060","citationCount":"31","resultStr":"{\"title\":\"Optimal Spatial Prediction Using Ensemble Machine Learning.\",\"authors\":\"Molly Margaret Davies, Mark J van der Laan\",\"doi\":\"10.1515/ijb-2014-0060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spatial prediction is an important problem in many scientific disciplines. Super Learner is an ensemble prediction approach related to stacked generalization that uses cross-validation to search for the optimal predictor amongst all convex combinations of a heterogeneous candidate set. It has been applied to non-spatial data, where theoretical results demonstrate it will perform asymptotically at least as well as the best candidate under consideration. We review these optimality properties and discuss the assumptions required in order for them to hold for spatial prediction problems. We present results of a simulation study confirming Super Learner works well in practice under a variety of sample sizes, sampling designs, and data-generating functions. We also apply Super Learner to a real world dataset.</p>\",\"PeriodicalId\":49058,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"12 1\",\"pages\":\"179-201\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2014-0060\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2014-0060\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2014-0060","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Optimal Spatial Prediction Using Ensemble Machine Learning.
Spatial prediction is an important problem in many scientific disciplines. Super Learner is an ensemble prediction approach related to stacked generalization that uses cross-validation to search for the optimal predictor amongst all convex combinations of a heterogeneous candidate set. It has been applied to non-spatial data, where theoretical results demonstrate it will perform asymptotically at least as well as the best candidate under consideration. We review these optimality properties and discuss the assumptions required in order for them to hold for spatial prediction problems. We present results of a simulation study confirming Super Learner works well in practice under a variety of sample sizes, sampling designs, and data-generating functions. We also apply Super Learner to a real world dataset.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.