{"title":"[神经细胞的等距收缩和看不见的过程]。","authors":"O S Sotnikov, N Yu Vasyagina, T V Krasnova","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, a large number of physiological studies on stress and hibernation had described an unusual morphological phenomenon of the rapid disappearance and reapperance of apical dendrites of pyramidal neurons of the hippocampus, prefrontal cortex and other parts of the brain. In this article an attempt is maid to explain this phenomenon on the basis of morphological analysis of natural elastic properties of neuroplasm and structural kinetics of partially preserved processes of the living isolated neurons. The neuroplasm displacement with its bidirectional flow was identified in the processes. A new physiological phenomenon is described--the isometric retraction of nerve cell processes, during which the neuroplasm fluxes were directed to the opposite sides, leading to abrupt thinning of middle parts of the processes and to a thickening of both ends. It is suggested that the extremely attenuated processes can reach the submicroscopic sizes, becoming invisible in the light microscope. The repeated reversible \"disappearance\" and \"appearance\" of the processes was demonstrated supravitally in the culture of neurons and of C-1300 neuroblastoma cells. Reduction of the diameter of the processes to a limit of their visibility was demonstrated by the example of their natural stretching. The same effect was observed in the areas between the reversible varicosities of the processes. These areas became extremely thin, and then invisible. Becoming thinner, the processes were capable of sharp extension. A review of the available literature and our own data allow to conclude that the phenomenon of the disappearance of the apical dendrites was due to their isometric retraction, which lead to the emergence of \"invisible processes\".</p>","PeriodicalId":74226,"journal":{"name":"Morfologiia (Saint Petersburg, Russia)","volume":"148 6","pages":"9-17"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[ISOMETRIC RETRACTION AND THE INVISIBLE PROCESSES OF NERVE CELLS].\",\"authors\":\"O S Sotnikov, N Yu Vasyagina, T V Krasnova\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, a large number of physiological studies on stress and hibernation had described an unusual morphological phenomenon of the rapid disappearance and reapperance of apical dendrites of pyramidal neurons of the hippocampus, prefrontal cortex and other parts of the brain. In this article an attempt is maid to explain this phenomenon on the basis of morphological analysis of natural elastic properties of neuroplasm and structural kinetics of partially preserved processes of the living isolated neurons. The neuroplasm displacement with its bidirectional flow was identified in the processes. A new physiological phenomenon is described--the isometric retraction of nerve cell processes, during which the neuroplasm fluxes were directed to the opposite sides, leading to abrupt thinning of middle parts of the processes and to a thickening of both ends. It is suggested that the extremely attenuated processes can reach the submicroscopic sizes, becoming invisible in the light microscope. The repeated reversible \\\"disappearance\\\" and \\\"appearance\\\" of the processes was demonstrated supravitally in the culture of neurons and of C-1300 neuroblastoma cells. Reduction of the diameter of the processes to a limit of their visibility was demonstrated by the example of their natural stretching. The same effect was observed in the areas between the reversible varicosities of the processes. These areas became extremely thin, and then invisible. Becoming thinner, the processes were capable of sharp extension. A review of the available literature and our own data allow to conclude that the phenomenon of the disappearance of the apical dendrites was due to their isometric retraction, which lead to the emergence of \\\"invisible processes\\\".</p>\",\"PeriodicalId\":74226,\"journal\":{\"name\":\"Morfologiia (Saint Petersburg, Russia)\",\"volume\":\"148 6\",\"pages\":\"9-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Morfologiia (Saint Petersburg, Russia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Morfologiia (Saint Petersburg, Russia)","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[ISOMETRIC RETRACTION AND THE INVISIBLE PROCESSES OF NERVE CELLS].
Recently, a large number of physiological studies on stress and hibernation had described an unusual morphological phenomenon of the rapid disappearance and reapperance of apical dendrites of pyramidal neurons of the hippocampus, prefrontal cortex and other parts of the brain. In this article an attempt is maid to explain this phenomenon on the basis of morphological analysis of natural elastic properties of neuroplasm and structural kinetics of partially preserved processes of the living isolated neurons. The neuroplasm displacement with its bidirectional flow was identified in the processes. A new physiological phenomenon is described--the isometric retraction of nerve cell processes, during which the neuroplasm fluxes were directed to the opposite sides, leading to abrupt thinning of middle parts of the processes and to a thickening of both ends. It is suggested that the extremely attenuated processes can reach the submicroscopic sizes, becoming invisible in the light microscope. The repeated reversible "disappearance" and "appearance" of the processes was demonstrated supravitally in the culture of neurons and of C-1300 neuroblastoma cells. Reduction of the diameter of the processes to a limit of their visibility was demonstrated by the example of their natural stretching. The same effect was observed in the areas between the reversible varicosities of the processes. These areas became extremely thin, and then invisible. Becoming thinner, the processes were capable of sharp extension. A review of the available literature and our own data allow to conclude that the phenomenon of the disappearance of the apical dendrites was due to their isometric retraction, which lead to the emergence of "invisible processes".