Nicholas P Whitehead, Min Jeong Kim, Kenneth L Bible, Marvin E Adams, Stanley C Froehner
{"title":"辛伐他汀为治疗杜氏肌营养不良症提供了新的前景。","authors":"Nicholas P Whitehead, Min Jeong Kim, Kenneth L Bible, Marvin E Adams, Stanley C Froehner","doi":"10.1080/21675511.2016.1156286","DOIUrl":null,"url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) is the most common and severe inherited neuromuscular disorder. DMD is caused by mutations in the gene encoding the dystrophin protein in muscle fibers. Dystrophin was originally proposed to be a structural protein that protected the sarcolemma from stresses produced during contractions. However, more recently, experimental evidence has revealed a far more complicated picture, with the loss of dystrophin causing dysfunction of multiple muscle signaling pathways, which all contribute to the overall disease pathophysiology. Current gene-based approaches for DMD are conceptually appealing since they offer the potential to restore dystrophin to muscles, albeit a partially functional, truncated form of the protein. However, given the cost and technical challenges facing these genetic approaches, it is important to consider if relatively inexpensive, clinically used drugs may be repurposed for treating DMD. Here, we discuss our recent findings showing the potential of simvastatin as a novel therapy for DMD. </p>","PeriodicalId":74639,"journal":{"name":"Rare diseases (Austin, Tex.)","volume":"4 1","pages":"e1156286"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21675511.2016.1156286","citationCount":"11","resultStr":"{\"title\":\"Simvastatin offers new prospects for the treatment of Duchenne muscular dystrophy.\",\"authors\":\"Nicholas P Whitehead, Min Jeong Kim, Kenneth L Bible, Marvin E Adams, Stanley C Froehner\",\"doi\":\"10.1080/21675511.2016.1156286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Duchenne muscular dystrophy (DMD) is the most common and severe inherited neuromuscular disorder. DMD is caused by mutations in the gene encoding the dystrophin protein in muscle fibers. Dystrophin was originally proposed to be a structural protein that protected the sarcolemma from stresses produced during contractions. However, more recently, experimental evidence has revealed a far more complicated picture, with the loss of dystrophin causing dysfunction of multiple muscle signaling pathways, which all contribute to the overall disease pathophysiology. Current gene-based approaches for DMD are conceptually appealing since they offer the potential to restore dystrophin to muscles, albeit a partially functional, truncated form of the protein. However, given the cost and technical challenges facing these genetic approaches, it is important to consider if relatively inexpensive, clinically used drugs may be repurposed for treating DMD. Here, we discuss our recent findings showing the potential of simvastatin as a novel therapy for DMD. </p>\",\"PeriodicalId\":74639,\"journal\":{\"name\":\"Rare diseases (Austin, Tex.)\",\"volume\":\"4 1\",\"pages\":\"e1156286\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21675511.2016.1156286\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare diseases (Austin, Tex.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21675511.2016.1156286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare diseases (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21675511.2016.1156286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Simvastatin offers new prospects for the treatment of Duchenne muscular dystrophy.
Duchenne muscular dystrophy (DMD) is the most common and severe inherited neuromuscular disorder. DMD is caused by mutations in the gene encoding the dystrophin protein in muscle fibers. Dystrophin was originally proposed to be a structural protein that protected the sarcolemma from stresses produced during contractions. However, more recently, experimental evidence has revealed a far more complicated picture, with the loss of dystrophin causing dysfunction of multiple muscle signaling pathways, which all contribute to the overall disease pathophysiology. Current gene-based approaches for DMD are conceptually appealing since they offer the potential to restore dystrophin to muscles, albeit a partially functional, truncated form of the protein. However, given the cost and technical challenges facing these genetic approaches, it is important to consider if relatively inexpensive, clinically used drugs may be repurposed for treating DMD. Here, we discuss our recent findings showing the potential of simvastatin as a novel therapy for DMD.