{"title":"将实例特定模型应用于纵向临床数据预测。","authors":"Emily Watt, James W Sayre, Alex A T Bui","doi":"10.1109/HISB.2011.12","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic Bayesian Belief networks (DBNs) have been commonly used to represent temporal data in several domains; however, an ideal representation requires a near perfect mapping between the process being modeled and the DBN. Furthermore, DBNs assume a full set of observations collected at a fixed frequency. Bayesian model selection has arisen to address biased inference and underlying assumptions about the data (e.g., distribution, representativeness) to choose a model that best fits the given observations. Per patient case, a Bayesian model is generated to maximize specificity, and the collective set of models is averaged to fit all examples. This paper demonstrates the advantages of patient-specific modeling over a DBN-driven approach. Results evaluating this approach are presented based on models for two longitudinal clinical datasets (neuro-oncology, knee osteoarthritis). Largely, the patient-specific models show improved performance in prediction relative to the DBNs.</p>","PeriodicalId":91600,"journal":{"name":"Proceedings. IEEE International Conference on Healthcare Informatics, Imaging and Systems Biology","volume":"2011 ","pages":"81-88"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/HISB.2011.12","citationCount":"1","resultStr":"{\"title\":\"Applying an Instance-specific Model to Longitudinal Clinical Data for Prediction.\",\"authors\":\"Emily Watt, James W Sayre, Alex A T Bui\",\"doi\":\"10.1109/HISB.2011.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dynamic Bayesian Belief networks (DBNs) have been commonly used to represent temporal data in several domains; however, an ideal representation requires a near perfect mapping between the process being modeled and the DBN. Furthermore, DBNs assume a full set of observations collected at a fixed frequency. Bayesian model selection has arisen to address biased inference and underlying assumptions about the data (e.g., distribution, representativeness) to choose a model that best fits the given observations. Per patient case, a Bayesian model is generated to maximize specificity, and the collective set of models is averaged to fit all examples. This paper demonstrates the advantages of patient-specific modeling over a DBN-driven approach. Results evaluating this approach are presented based on models for two longitudinal clinical datasets (neuro-oncology, knee osteoarthritis). Largely, the patient-specific models show improved performance in prediction relative to the DBNs.</p>\",\"PeriodicalId\":91600,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Healthcare Informatics, Imaging and Systems Biology\",\"volume\":\"2011 \",\"pages\":\"81-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/HISB.2011.12\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Healthcare Informatics, Imaging and Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HISB.2011.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/10/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Healthcare Informatics, Imaging and Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HISB.2011.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Applying an Instance-specific Model to Longitudinal Clinical Data for Prediction.
Dynamic Bayesian Belief networks (DBNs) have been commonly used to represent temporal data in several domains; however, an ideal representation requires a near perfect mapping between the process being modeled and the DBN. Furthermore, DBNs assume a full set of observations collected at a fixed frequency. Bayesian model selection has arisen to address biased inference and underlying assumptions about the data (e.g., distribution, representativeness) to choose a model that best fits the given observations. Per patient case, a Bayesian model is generated to maximize specificity, and the collective set of models is averaged to fit all examples. This paper demonstrates the advantages of patient-specific modeling over a DBN-driven approach. Results evaluating this approach are presented based on models for two longitudinal clinical datasets (neuro-oncology, knee osteoarthritis). Largely, the patient-specific models show improved performance in prediction relative to the DBNs.