平方根图形模型:允许正相关的单变量指数族的多元推广。

David I Inouye, Pradeep Ravikumar, Inderjit S Dhillon
{"title":"平方根图形模型:允许正相关的单变量指数族的多元推广。","authors":"David I Inouye,&nbsp;Pradeep Ravikumar,&nbsp;Inderjit S Dhillon","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We develop Square Root Graphical Models (SQR), a novel class of parametric graphical models that provides multivariate generalizations of univariate exponential family distributions. Previous multivariate graphical models (Yang et al., 2015) did not allow positive dependencies for the exponential and Poisson generalizations. However, in many real-world datasets, variables clearly have positive dependencies. For example, the airport delay time in New York-modeled as an exponential distribution-is positively related to the delay time in Boston. With this motivation, we give an example of our model class derived from the univariate exponential distribution that allows for almost arbitrary positive and negative dependencies with only a mild condition on the parameter matrix-a condition akin to the positive definiteness of the Gaussian covariance matrix. Our Poisson generalization allows for both positive and negative dependencies without any constraints on the parameter values. We also develop parameter estimation methods using node-wise regressions with <i>ℓ</i><sub>1</sub> regularization and likelihood approximation methods using sampling. Finally, we demonstrate our exponential generalization on a synthetic dataset and a real-world dataset of airport delay times.</p>","PeriodicalId":89793,"journal":{"name":"JMLR workshop and conference proceedings","volume":"48 ","pages":"2445-2453"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4995108/pdf/nihms808904.pdf","citationCount":"0","resultStr":"{\"title\":\"Square Root Graphical Models: Multivariate Generalizations of Univariate Exponential Families that Permit Positive Dependencies.\",\"authors\":\"David I Inouye,&nbsp;Pradeep Ravikumar,&nbsp;Inderjit S Dhillon\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We develop Square Root Graphical Models (SQR), a novel class of parametric graphical models that provides multivariate generalizations of univariate exponential family distributions. Previous multivariate graphical models (Yang et al., 2015) did not allow positive dependencies for the exponential and Poisson generalizations. However, in many real-world datasets, variables clearly have positive dependencies. For example, the airport delay time in New York-modeled as an exponential distribution-is positively related to the delay time in Boston. With this motivation, we give an example of our model class derived from the univariate exponential distribution that allows for almost arbitrary positive and negative dependencies with only a mild condition on the parameter matrix-a condition akin to the positive definiteness of the Gaussian covariance matrix. Our Poisson generalization allows for both positive and negative dependencies without any constraints on the parameter values. We also develop parameter estimation methods using node-wise regressions with <i>ℓ</i><sub>1</sub> regularization and likelihood approximation methods using sampling. Finally, we demonstrate our exponential generalization on a synthetic dataset and a real-world dataset of airport delay times.</p>\",\"PeriodicalId\":89793,\"journal\":{\"name\":\"JMLR workshop and conference proceedings\",\"volume\":\"48 \",\"pages\":\"2445-2453\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4995108/pdf/nihms808904.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMLR workshop and conference proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMLR workshop and conference proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了平方根图形模型(SQR),这是一类新的参数图形模型,它提供了单变量指数族分布的多元推广。以前的多变量图形模型(Yang et al., 2015)不允许指数和泊松推广的正依赖关系。然而,在许多真实世界的数据集中,变量显然具有正相关性。例如,纽约机场的延误时间(建模为指数分布)与波士顿的延误时间呈正相关。有了这个动机,我们给出了一个模型类的例子,该模型类来源于单变量指数分布,它允许几乎任意的正相关和负相关,而参数矩阵只有一个温和的条件——一个类似于高斯协方差矩阵的正确定性的条件。我们的泊松泛化允许正依赖和负依赖,而不受参数值的任何约束。我们也发展了参数估计方法使用节点明智的回归与1正则化和似然逼近方法使用抽样。最后,我们在一个合成数据集和一个真实的机场延误时间数据集上证明了我们的指数泛化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Square Root Graphical Models: Multivariate Generalizations of Univariate Exponential Families that Permit Positive Dependencies.

Square Root Graphical Models: Multivariate Generalizations of Univariate Exponential Families that Permit Positive Dependencies.

Square Root Graphical Models: Multivariate Generalizations of Univariate Exponential Families that Permit Positive Dependencies.

We develop Square Root Graphical Models (SQR), a novel class of parametric graphical models that provides multivariate generalizations of univariate exponential family distributions. Previous multivariate graphical models (Yang et al., 2015) did not allow positive dependencies for the exponential and Poisson generalizations. However, in many real-world datasets, variables clearly have positive dependencies. For example, the airport delay time in New York-modeled as an exponential distribution-is positively related to the delay time in Boston. With this motivation, we give an example of our model class derived from the univariate exponential distribution that allows for almost arbitrary positive and negative dependencies with only a mild condition on the parameter matrix-a condition akin to the positive definiteness of the Gaussian covariance matrix. Our Poisson generalization allows for both positive and negative dependencies without any constraints on the parameter values. We also develop parameter estimation methods using node-wise regressions with 1 regularization and likelihood approximation methods using sampling. Finally, we demonstrate our exponential generalization on a synthetic dataset and a real-world dataset of airport delay times.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信