Wnt信号对破骨细胞分化的调控。

BoneKEy reports Pub Date : 2015-07-01 eCollection Date: 2015-01-01 DOI:10.1038/bonekey.2015.82
Yasuhiro Kobayashi, Shunsuke Uehara, Masanori Koide, Naoyuki Takahashi
{"title":"Wnt信号对破骨细胞分化的调控。","authors":"Yasuhiro Kobayashi,&nbsp;Shunsuke Uehara,&nbsp;Masanori Koide,&nbsp;Naoyuki Takahashi","doi":"10.1038/bonekey.2015.82","DOIUrl":null,"url":null,"abstract":"<p><p>Wnt ligands activate β-catenin-dependent canonical and -independent noncanonical signaling pathways. Wnt regulates many physiological events such as the development of organs and bone metabolism. In contrast, failed signaling leads to pathological conditions including cancer and osteoporosis. Analyses of loss-of-function mutations in the low-density lipoprotein receptor-related protein (Lrp) 5 gene revealed that Lrp5 acted as a co-receptor of Wnt/β-catenin signals and positively regulated bone mass in humans and mice. Many players in Wnt signals including sclerostin, an osteocyte-derived Wnt antagonist, also have since been found to influence bone mass. Bone mass is regulated by the activities of bone-forming osteoblasts, -resorbing osteoclasts and matrix-embedded osteocytes. The roles of Wnt/β-catenin signals in osteoblastogenesis and osteoclastogenesis have been established by the findings of a large number of in vitro and in vivo studies. In contrast, the roles of noncanonical Wnt signals in bone metabolism are only now being examined. In this review, we introduced and discussed recent information on the roles of Wnt signals in bone resorption. </p>","PeriodicalId":72441,"journal":{"name":"BoneKEy reports","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/bonekey.2015.82","citationCount":"3","resultStr":"{\"title\":\"The regulation of osteoclast differentiation by Wnt signals.\",\"authors\":\"Yasuhiro Kobayashi,&nbsp;Shunsuke Uehara,&nbsp;Masanori Koide,&nbsp;Naoyuki Takahashi\",\"doi\":\"10.1038/bonekey.2015.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wnt ligands activate β-catenin-dependent canonical and -independent noncanonical signaling pathways. Wnt regulates many physiological events such as the development of organs and bone metabolism. In contrast, failed signaling leads to pathological conditions including cancer and osteoporosis. Analyses of loss-of-function mutations in the low-density lipoprotein receptor-related protein (Lrp) 5 gene revealed that Lrp5 acted as a co-receptor of Wnt/β-catenin signals and positively regulated bone mass in humans and mice. Many players in Wnt signals including sclerostin, an osteocyte-derived Wnt antagonist, also have since been found to influence bone mass. Bone mass is regulated by the activities of bone-forming osteoblasts, -resorbing osteoclasts and matrix-embedded osteocytes. The roles of Wnt/β-catenin signals in osteoblastogenesis and osteoclastogenesis have been established by the findings of a large number of in vitro and in vivo studies. In contrast, the roles of noncanonical Wnt signals in bone metabolism are only now being examined. In this review, we introduced and discussed recent information on the roles of Wnt signals in bone resorption. </p>\",\"PeriodicalId\":72441,\"journal\":{\"name\":\"BoneKEy reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1038/bonekey.2015.82\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BoneKEy reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/bonekey.2015.82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BoneKEy reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/bonekey.2015.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

Wnt配体激活β-连环蛋白依赖的典型和独立的非典型信号通路。Wnt调节许多生理事件,如器官发育和骨代谢。相反,信号传导失败导致包括癌症和骨质疏松症在内的病理状况。低密度脂蛋白受体相关蛋白(Lrp) 5基因的功能缺失突变分析显示,Lrp5作为Wnt/β-catenin信号的共受体,在人和小鼠中积极调节骨量。Wnt信号中的许多参与者,包括硬化蛋白(一种骨细胞来源的Wnt拮抗剂),也被发现影响骨量。骨量是由成骨细胞、再吸收破骨细胞和基质嵌入骨细胞的活动调节的。Wnt/β-catenin信号在成骨细胞和破骨细胞发生中的作用已经被大量体外和体内研究所证实。相比之下,非规范Wnt信号在骨代谢中的作用现在才被研究。在这篇综述中,我们介绍并讨论了Wnt信号在骨吸收中的作用的最新信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The regulation of osteoclast differentiation by Wnt signals.

Wnt ligands activate β-catenin-dependent canonical and -independent noncanonical signaling pathways. Wnt regulates many physiological events such as the development of organs and bone metabolism. In contrast, failed signaling leads to pathological conditions including cancer and osteoporosis. Analyses of loss-of-function mutations in the low-density lipoprotein receptor-related protein (Lrp) 5 gene revealed that Lrp5 acted as a co-receptor of Wnt/β-catenin signals and positively regulated bone mass in humans and mice. Many players in Wnt signals including sclerostin, an osteocyte-derived Wnt antagonist, also have since been found to influence bone mass. Bone mass is regulated by the activities of bone-forming osteoblasts, -resorbing osteoclasts and matrix-embedded osteocytes. The roles of Wnt/β-catenin signals in osteoblastogenesis and osteoclastogenesis have been established by the findings of a large number of in vitro and in vivo studies. In contrast, the roles of noncanonical Wnt signals in bone metabolism are only now being examined. In this review, we introduced and discussed recent information on the roles of Wnt signals in bone resorption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信