环氧树脂和二胺硬化剂通过防护手套和服装材料的渗透试验。

Annals of Occupational Hygiene Pub Date : 2015-10-01 Epub Date: 2015-06-29 DOI:10.1093/annhyg/mev040
Maj-Len Henriks-Eckerman, Erja A Mäkelä, Katri Suuronen
{"title":"环氧树脂和二胺硬化剂通过防护手套和服装材料的渗透试验。","authors":"Maj-Len Henriks-Eckerman,&nbsp;Erja A Mäkelä,&nbsp;Katri Suuronen","doi":"10.1093/annhyg/mev040","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient, comfortable, yet affordable personal protective equipment (PPE) is needed to decrease the high incidence of allergic contact dermatitis arising from epoxy resin systems (ERSs) in industrial countries. The aim of this study was to find affordable, user-friendly glove and clothing materials that provide adequate skin protection against splashes and during the short contact with ERS that often occurs before full cure. We studied the penetration of epoxy resin and diamine hardeners through 12 glove or clothing materials using a newly developed test method. The tests were carried out with two ERS test mixtures that had a high content of epoxy resin and frequently used diamine hardeners of different molar masses. A drop (50 µl) of test mixture was placed on the outer surface of the glove/clothing material, which had a piece of Fixomull tape or Harmony protection sheet attached to the inner surface as the collection medium. The test times were 10 and 30 min. The collecting material was removed after the test was finished and immersed into acetone. The amounts of diglycidyl ether of bisphenol A (DGEBA), isophorone diamine (IPDA), and m-xylylenediamine (XDA) in the acetone solution were determined by gas chromatography with mass spectrometric detection. The limit for acceptable penetration of XDA, IPDA, and DGEBA through glove materials was set at 2 µg cm(-2). Penetration through the glove materials was 1.4 µg cm(-2) or less. The three tested chemical protective gloves showed no detectable penetration (<0.5 µg cm(-2)). Several affordable glove and clothing materials were found to provide adequate protection during short contact with ERS, in the form of, for example, disposable gloves or clothing materials suitable for aprons and as additional protective layers on the most exposed parts of clothing, such as the front of the legs and thighs and under the forearms. Every ERS combination in use should be tested separately to find the best skin protection material, and this can be done by using this simple test method.</p>","PeriodicalId":8458,"journal":{"name":"Annals of Occupational Hygiene","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/annhyg/mev040","citationCount":"8","resultStr":"{\"title\":\"Testing Penetration of Epoxy Resin and Diamine Hardeners through Protective Glove and Clothing Materials.\",\"authors\":\"Maj-Len Henriks-Eckerman,&nbsp;Erja A Mäkelä,&nbsp;Katri Suuronen\",\"doi\":\"10.1093/annhyg/mev040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Efficient, comfortable, yet affordable personal protective equipment (PPE) is needed to decrease the high incidence of allergic contact dermatitis arising from epoxy resin systems (ERSs) in industrial countries. The aim of this study was to find affordable, user-friendly glove and clothing materials that provide adequate skin protection against splashes and during the short contact with ERS that often occurs before full cure. We studied the penetration of epoxy resin and diamine hardeners through 12 glove or clothing materials using a newly developed test method. The tests were carried out with two ERS test mixtures that had a high content of epoxy resin and frequently used diamine hardeners of different molar masses. A drop (50 µl) of test mixture was placed on the outer surface of the glove/clothing material, which had a piece of Fixomull tape or Harmony protection sheet attached to the inner surface as the collection medium. The test times were 10 and 30 min. The collecting material was removed after the test was finished and immersed into acetone. The amounts of diglycidyl ether of bisphenol A (DGEBA), isophorone diamine (IPDA), and m-xylylenediamine (XDA) in the acetone solution were determined by gas chromatography with mass spectrometric detection. The limit for acceptable penetration of XDA, IPDA, and DGEBA through glove materials was set at 2 µg cm(-2). Penetration through the glove materials was 1.4 µg cm(-2) or less. The three tested chemical protective gloves showed no detectable penetration (<0.5 µg cm(-2)). Several affordable glove and clothing materials were found to provide adequate protection during short contact with ERS, in the form of, for example, disposable gloves or clothing materials suitable for aprons and as additional protective layers on the most exposed parts of clothing, such as the front of the legs and thighs and under the forearms. Every ERS combination in use should be tested separately to find the best skin protection material, and this can be done by using this simple test method.</p>\",\"PeriodicalId\":8458,\"journal\":{\"name\":\"Annals of Occupational Hygiene\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/annhyg/mev040\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Occupational Hygiene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/annhyg/mev040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/6/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Occupational Hygiene","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/annhyg/mev040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/6/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

工业国家需要高效、舒适且负担得起的个人防护装备(PPE),以降低由环氧树脂系统(ERSs)引起的过敏性接触性皮炎的高发病率。本研究的目的是寻找价格合理,用户友好的手套和服装材料,提供足够的皮肤保护,防止飞溅,并在与ERS短时间接触期间,通常发生在完全治愈之前。我们用一种新开发的测试方法研究了环氧树脂和二胺硬化剂对12种手套或服装材料的渗透。试验采用两种ERS试验混合物进行,这两种混合物具有高含量的环氧树脂和常用的不同摩尔质量的二胺硬化剂。在手套/服装材料的外表面滴一滴(50µl)试验混合物,内表面贴附一块Fixomull胶带或Harmony保护片作为收集介质。试验时间分别为10min和30min。试验结束后取下收集物料,浸入丙酮中。采用气相色谱-质谱法测定丙酮溶液中双酚A二缩水甘油酯(DGEBA)、异戊二胺(IPDA)和间二甲基二胺(XDA)的含量。XDA、IPDA和DGEBA通过手套材料的可接受穿透极限设定为2µg cm(-2)。穿过手套材料的穿透力小于等于1.4µg cm(-2)。三副经测试的化学防护手套均未发现渗透(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing Penetration of Epoxy Resin and Diamine Hardeners through Protective Glove and Clothing Materials.

Efficient, comfortable, yet affordable personal protective equipment (PPE) is needed to decrease the high incidence of allergic contact dermatitis arising from epoxy resin systems (ERSs) in industrial countries. The aim of this study was to find affordable, user-friendly glove and clothing materials that provide adequate skin protection against splashes and during the short contact with ERS that often occurs before full cure. We studied the penetration of epoxy resin and diamine hardeners through 12 glove or clothing materials using a newly developed test method. The tests were carried out with two ERS test mixtures that had a high content of epoxy resin and frequently used diamine hardeners of different molar masses. A drop (50 µl) of test mixture was placed on the outer surface of the glove/clothing material, which had a piece of Fixomull tape or Harmony protection sheet attached to the inner surface as the collection medium. The test times were 10 and 30 min. The collecting material was removed after the test was finished and immersed into acetone. The amounts of diglycidyl ether of bisphenol A (DGEBA), isophorone diamine (IPDA), and m-xylylenediamine (XDA) in the acetone solution were determined by gas chromatography with mass spectrometric detection. The limit for acceptable penetration of XDA, IPDA, and DGEBA through glove materials was set at 2 µg cm(-2). Penetration through the glove materials was 1.4 µg cm(-2) or less. The three tested chemical protective gloves showed no detectable penetration (<0.5 µg cm(-2)). Several affordable glove and clothing materials were found to provide adequate protection during short contact with ERS, in the form of, for example, disposable gloves or clothing materials suitable for aprons and as additional protective layers on the most exposed parts of clothing, such as the front of the legs and thighs and under the forearms. Every ERS combination in use should be tested separately to find the best skin protection material, and this can be done by using this simple test method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信