生物医学文本名称实体识别的协同决策矩阵框架。

Pub Date : 2015-01-01 DOI:10.1504/ijdmb.2015.067956
Haochang Wang, Yu Li
{"title":"生物医学文本名称实体识别的协同决策矩阵框架。","authors":"Haochang Wang,&nbsp;Yu Li","doi":"10.1504/ijdmb.2015.067956","DOIUrl":null,"url":null,"abstract":"<p><p>As a new branch of data mining and knowledge discovery, the research of biomedical text mining has a rapid progress currently. Biomedical named entity (BNE) recognition is a basic technique in the biomedical knowledge discovery and its performance has direct effects on further discovery and processing in biomedical texts. In this paper, we present an improved method based on co-decision matrix framework for Biomedical Named Entity Recognition (BNER). The relativity between classifiers is utilised by using co-decision matrix to exchange decision information among classifiers. The experiments are carried on GENIA corpus with the best result of 75.9% F-score. Experimental results show that the proposed method, co-decision matrix framework, can yield promising performances.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijdmb.2015.067956","citationCount":"1","resultStr":"{\"title\":\"Co-decision matrix framework for name entity recognition in biomedical text.\",\"authors\":\"Haochang Wang,&nbsp;Yu Li\",\"doi\":\"10.1504/ijdmb.2015.067956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a new branch of data mining and knowledge discovery, the research of biomedical text mining has a rapid progress currently. Biomedical named entity (BNE) recognition is a basic technique in the biomedical knowledge discovery and its performance has direct effects on further discovery and processing in biomedical texts. In this paper, we present an improved method based on co-decision matrix framework for Biomedical Named Entity Recognition (BNER). The relativity between classifiers is utilised by using co-decision matrix to exchange decision information among classifiers. The experiments are carried on GENIA corpus with the best result of 75.9% F-score. Experimental results show that the proposed method, co-decision matrix framework, can yield promising performances.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/ijdmb.2015.067956\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1504/ijdmb.2015.067956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/ijdmb.2015.067956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

生物医学文本挖掘作为数据挖掘和知识发现的一个新分支,目前研究进展迅速。生物医学命名实体(BNE)识别是生物医学知识发现的一项基本技术,其性能直接影响到生物医学文本的进一步发现和处理。本文提出了一种改进的基于协同决策矩阵框架的生物医学命名实体识别方法。利用分类器之间的相关性,利用共同决策矩阵在分类器之间交换决策信息。实验在GENIA语料上进行,f值达到75.9%。实验结果表明,所提出的联合决策矩阵框架方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Co-decision matrix framework for name entity recognition in biomedical text.

As a new branch of data mining and knowledge discovery, the research of biomedical text mining has a rapid progress currently. Biomedical named entity (BNE) recognition is a basic technique in the biomedical knowledge discovery and its performance has direct effects on further discovery and processing in biomedical texts. In this paper, we present an improved method based on co-decision matrix framework for Biomedical Named Entity Recognition (BNER). The relativity between classifiers is utilised by using co-decision matrix to exchange decision information among classifiers. The experiments are carried on GENIA corpus with the best result of 75.9% F-score. Experimental results show that the proposed method, co-decision matrix framework, can yield promising performances.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信