显示细胞类型特异性剪接的外显子中的启动子类表观遗传特征。

IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences
Joao Curado, Camilla Iannone, Hagen Tilgner, Juan Valcárcel, Roderic Guigó
{"title":"显示细胞类型特异性剪接的外显子中的启动子类表观遗传特征。","authors":"Joao Curado, Camilla Iannone, Hagen Tilgner, Juan Valcárcel, Roderic Guigó","doi":"10.1186/s13059-015-0797-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pre-mRNA splicing occurs mainly co-transcriptionally, and both nucleosome density and histone modifications have been proposed to play a role in splice site recognition and regulation. However, the extent and mechanisms behind this interplay remain poorly understood.</p><p><strong>Results: </strong>We use transcriptomic and epigenomic data generated by the ENCODE project to investigate the association between chromatin structure and alternative splicing. We find a strong and significant positive association between H3K9ac, H3K27ac, H3K4me3, epigenetic marks characteristic of active promoters, and exon inclusion in a small but well-defined class of exons, representing approximately 4 % of all regulated exons. These exons are systematically maintained at comparatively low levels of inclusion across cell types, but their inclusion is significantly enhanced in particular cell types when in physical proximity to active promoters.</p><p><strong>Conclusion: </strong>Histone modifications and other chromatin features that activate transcription can be co-opted to participate in the regulation of the splicing of exons that are in physical proximity to promoter regions.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"16 ","pages":"236"},"PeriodicalIF":12.3000,"publicationDate":"2015-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619081/pdf/","citationCount":"0","resultStr":"{\"title\":\"Promoter-like epigenetic signatures in exons displaying cell type-specific splicing.\",\"authors\":\"Joao Curado, Camilla Iannone, Hagen Tilgner, Juan Valcárcel, Roderic Guigó\",\"doi\":\"10.1186/s13059-015-0797-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pre-mRNA splicing occurs mainly co-transcriptionally, and both nucleosome density and histone modifications have been proposed to play a role in splice site recognition and regulation. However, the extent and mechanisms behind this interplay remain poorly understood.</p><p><strong>Results: </strong>We use transcriptomic and epigenomic data generated by the ENCODE project to investigate the association between chromatin structure and alternative splicing. We find a strong and significant positive association between H3K9ac, H3K27ac, H3K4me3, epigenetic marks characteristic of active promoters, and exon inclusion in a small but well-defined class of exons, representing approximately 4 % of all regulated exons. These exons are systematically maintained at comparatively low levels of inclusion across cell types, but their inclusion is significantly enhanced in particular cell types when in physical proximity to active promoters.</p><p><strong>Conclusion: </strong>Histone modifications and other chromatin features that activate transcription can be co-opted to participate in the regulation of the splicing of exons that are in physical proximity to promoter regions.</p>\",\"PeriodicalId\":48922,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"16 \",\"pages\":\"236\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2015-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619081/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-015-0797-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-015-0797-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

背景:核小体密度和组蛋白修饰被认为在剪接位点识别和调控中发挥作用。然而,人们对这种相互作用背后的程度和机制仍然知之甚少:我们利用 ENCODE 项目产生的转录组和表观基因组数据研究了染色质结构与替代剪接之间的关联。我们发现,H3K9ac、H3K27ac、H3K4me3(活跃启动子特有的表观遗传标记)与一小部分定义明确的外显子(约占所有受调控外显子的 4%)中的外显子包含之间存在强烈而显著的正相关。这些外显子在不同细胞类型中系统地保持着相对较低的内含水平,但在特定细胞类型中,当这些外显子与活跃的启动子物理性接近时,其内含水平会显著提高:结论:激活转录的组蛋白修饰和其他染色质特征可共同参与调控与启动子区域物理邻近的外显子的剪接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Promoter-like epigenetic signatures in exons displaying cell type-specific splicing.

Promoter-like epigenetic signatures in exons displaying cell type-specific splicing.

Promoter-like epigenetic signatures in exons displaying cell type-specific splicing.

Promoter-like epigenetic signatures in exons displaying cell type-specific splicing.

Background: Pre-mRNA splicing occurs mainly co-transcriptionally, and both nucleosome density and histone modifications have been proposed to play a role in splice site recognition and regulation. However, the extent and mechanisms behind this interplay remain poorly understood.

Results: We use transcriptomic and epigenomic data generated by the ENCODE project to investigate the association between chromatin structure and alternative splicing. We find a strong and significant positive association between H3K9ac, H3K27ac, H3K4me3, epigenetic marks characteristic of active promoters, and exon inclusion in a small but well-defined class of exons, representing approximately 4 % of all regulated exons. These exons are systematically maintained at comparatively low levels of inclusion across cell types, but their inclusion is significantly enhanced in particular cell types when in physical proximity to active promoters.

Conclusion: Histone modifications and other chromatin features that activate transcription can be co-opted to participate in the regulation of the splicing of exons that are in physical proximity to promoter regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
25.50
自引率
3.30%
发文量
0
审稿时长
14 weeks
期刊介绍: Genome Biology is a leading research journal that focuses on the study of biology and biomedicine from a genomic and post-genomic standpoint. The journal consistently publishes outstanding research across various areas within these fields. With an impressive impact factor of 12.3 (2022), Genome Biology has earned its place as the 3rd highest-ranked research journal in the Genetics and Heredity category, according to Thomson Reuters. Additionally, it is ranked 2nd among research journals in the Biotechnology and Applied Microbiology category. It is important to note that Genome Biology is the top-ranking open access journal in this category. In summary, Genome Biology sets a high standard for scientific publications in the field, showcasing cutting-edge research and earning recognition among its peers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信