Mario Javier Gutiérrez-Fernández, Ana Edith Higareda-Mendoza, César Adrián Gómez-Correa, Marco Aurelio Pardo-Galván
{"title":"真核生物翻译起始因子3f (eIF3f)与α 1b肾上腺素能受体相互作用,刺激肾上腺素能受体活性。","authors":"Mario Javier Gutiérrez-Fernández, Ana Edith Higareda-Mendoza, César Adrián Gómez-Correa, Marco Aurelio Pardo-Galván","doi":"10.1186/s12858-015-0054-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>eIF3f is a multifunctional protein capable of interacting with proteins involved in different cellular processes, such as protein synthesis, DNA repair, and viral mRNA edition. In human cells, eIF3f is related to cell cycle and proliferation, and its deregulation compromises cell viability.</p><p><strong>Results: </strong>We here report that, in native conditions, eIF3f physically interacts with the alpha 1B-adrenergic receptor, a plasma membrane protein considered as a proto-oncogene, and involved in vasoconstriction and cell proliferation. The complex formed by eIF3f and alpha 1B-ADR was found in human and mouse cell lines. Upon catecholamine stimulation, eIF3f promotes adrenoceptor activity in vitro, independently of the eIF3f proline- and alanine-rich N-terminal region.</p><p><strong>Conclusions: </strong>The eIF3f/alpha adrenergic receptor interaction opens new insights regarding adrenoceptor-related transduction pathways and proliferation control in human cells. The eIf3f/alpha 1B-ADR complex is found in mammals and is not tissue specific.</p>","PeriodicalId":9113,"journal":{"name":"BMC Biochemistry","volume":"16 ","pages":"25"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12858-015-0054-5","citationCount":"5","resultStr":"{\"title\":\"The eukaryotic translation initiation factor 3f (eIF3f) interacts physically with the alpha 1B-adrenergic receptor and stimulates adrenoceptor activity.\",\"authors\":\"Mario Javier Gutiérrez-Fernández, Ana Edith Higareda-Mendoza, César Adrián Gómez-Correa, Marco Aurelio Pardo-Galván\",\"doi\":\"10.1186/s12858-015-0054-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>eIF3f is a multifunctional protein capable of interacting with proteins involved in different cellular processes, such as protein synthesis, DNA repair, and viral mRNA edition. In human cells, eIF3f is related to cell cycle and proliferation, and its deregulation compromises cell viability.</p><p><strong>Results: </strong>We here report that, in native conditions, eIF3f physically interacts with the alpha 1B-adrenergic receptor, a plasma membrane protein considered as a proto-oncogene, and involved in vasoconstriction and cell proliferation. The complex formed by eIF3f and alpha 1B-ADR was found in human and mouse cell lines. Upon catecholamine stimulation, eIF3f promotes adrenoceptor activity in vitro, independently of the eIF3f proline- and alanine-rich N-terminal region.</p><p><strong>Conclusions: </strong>The eIF3f/alpha adrenergic receptor interaction opens new insights regarding adrenoceptor-related transduction pathways and proliferation control in human cells. The eIf3f/alpha 1B-ADR complex is found in mammals and is not tissue specific.</p>\",\"PeriodicalId\":9113,\"journal\":{\"name\":\"BMC Biochemistry\",\"volume\":\"16 \",\"pages\":\"25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12858-015-0054-5\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12858-015-0054-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12858-015-0054-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
The eukaryotic translation initiation factor 3f (eIF3f) interacts physically with the alpha 1B-adrenergic receptor and stimulates adrenoceptor activity.
Background: eIF3f is a multifunctional protein capable of interacting with proteins involved in different cellular processes, such as protein synthesis, DNA repair, and viral mRNA edition. In human cells, eIF3f is related to cell cycle and proliferation, and its deregulation compromises cell viability.
Results: We here report that, in native conditions, eIF3f physically interacts with the alpha 1B-adrenergic receptor, a plasma membrane protein considered as a proto-oncogene, and involved in vasoconstriction and cell proliferation. The complex formed by eIF3f and alpha 1B-ADR was found in human and mouse cell lines. Upon catecholamine stimulation, eIF3f promotes adrenoceptor activity in vitro, independently of the eIF3f proline- and alanine-rich N-terminal region.
Conclusions: The eIF3f/alpha adrenergic receptor interaction opens new insights regarding adrenoceptor-related transduction pathways and proliferation control in human cells. The eIf3f/alpha 1B-ADR complex is found in mammals and is not tissue specific.
期刊介绍:
BMC Biochemistry is an open access journal publishing original peer-reviewed research articles in all aspects of biochemical processes, including the structure, function and dynamics of metabolic pathways, supramolecular complexes, enzymes, proteins, nucleic acids and small molecular components of organelles, cells and tissues. BMC Biochemistry (ISSN 1471-2091) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, CAS, EMBASE, Scopus, Zoological Record, Thomson Reuters (ISI) and Google Scholar.