{"title":"TREM2-DAP12信号通路在纳苏-哈科拉病中的分子遗传学研究","authors":"Junjie Xing, Amanda R Titus, Mary Beth Humphrey","doi":"10.2147/RRBC.S58057","DOIUrl":null,"url":null,"abstract":"<p><p>Nasu-Hakola disease or polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL) is a rare recessively inherited disease that is associated with early dementia and bone cysts with fractures. Here, we review the genetic causes of PLOSL with loss-of-function mutations or deletions in one of two genes, <i>TYROBP</i> and <i>TREM2</i>, encoding for two proteins DNAX-activating protein 12 (DAP12) and triggering receptor expressed on myeloid cells-2 (TREM2). TREM2 and DAP12 form an immunoreceptor signaling complex that mediates myeloid cell, including microglia and osteoclasts, development, activation, and function. Functionally, TREM2-DAP12 mediates osteoclast multi-nucleation, migration, and resorption. In microglia, TREM2-DAP12 participates in recognition and apoptosis of neuronal debris and amyloid deposits. Review of the complex immunoregulatory roles of TREM2-DAP12 in the innate immune system, where it can both promote and inhibit pro-inflammatory responses, is given. Little is known about the function of TREM2-DAP12 in normal brain homeostasis or in pathological central nervous system diseases. Based on the state of the field, genetic testing now aids in diagnosis of PLOSL, but therapeutics and interventions are still under development.</p>","PeriodicalId":91164,"journal":{"name":"Research and reports in biochemistry","volume":"5 ","pages":"89-100"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/RRBC.S58057","citationCount":"75","resultStr":"{\"title\":\"The TREM2-DAP12 signaling pathway in Nasu-Hakola disease: a molecular genetics perspective.\",\"authors\":\"Junjie Xing, Amanda R Titus, Mary Beth Humphrey\",\"doi\":\"10.2147/RRBC.S58057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nasu-Hakola disease or polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL) is a rare recessively inherited disease that is associated with early dementia and bone cysts with fractures. Here, we review the genetic causes of PLOSL with loss-of-function mutations or deletions in one of two genes, <i>TYROBP</i> and <i>TREM2</i>, encoding for two proteins DNAX-activating protein 12 (DAP12) and triggering receptor expressed on myeloid cells-2 (TREM2). TREM2 and DAP12 form an immunoreceptor signaling complex that mediates myeloid cell, including microglia and osteoclasts, development, activation, and function. Functionally, TREM2-DAP12 mediates osteoclast multi-nucleation, migration, and resorption. In microglia, TREM2-DAP12 participates in recognition and apoptosis of neuronal debris and amyloid deposits. Review of the complex immunoregulatory roles of TREM2-DAP12 in the innate immune system, where it can both promote and inhibit pro-inflammatory responses, is given. Little is known about the function of TREM2-DAP12 in normal brain homeostasis or in pathological central nervous system diseases. Based on the state of the field, genetic testing now aids in diagnosis of PLOSL, but therapeutics and interventions are still under development.</p>\",\"PeriodicalId\":91164,\"journal\":{\"name\":\"Research and reports in biochemistry\",\"volume\":\"5 \",\"pages\":\"89-100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2147/RRBC.S58057\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research and reports in biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/RRBC.S58057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/3/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research and reports in biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/RRBC.S58057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/3/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
The TREM2-DAP12 signaling pathway in Nasu-Hakola disease: a molecular genetics perspective.
Nasu-Hakola disease or polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL) is a rare recessively inherited disease that is associated with early dementia and bone cysts with fractures. Here, we review the genetic causes of PLOSL with loss-of-function mutations or deletions in one of two genes, TYROBP and TREM2, encoding for two proteins DNAX-activating protein 12 (DAP12) and triggering receptor expressed on myeloid cells-2 (TREM2). TREM2 and DAP12 form an immunoreceptor signaling complex that mediates myeloid cell, including microglia and osteoclasts, development, activation, and function. Functionally, TREM2-DAP12 mediates osteoclast multi-nucleation, migration, and resorption. In microglia, TREM2-DAP12 participates in recognition and apoptosis of neuronal debris and amyloid deposits. Review of the complex immunoregulatory roles of TREM2-DAP12 in the innate immune system, where it can both promote and inhibit pro-inflammatory responses, is given. Little is known about the function of TREM2-DAP12 in normal brain homeostasis or in pathological central nervous system diseases. Based on the state of the field, genetic testing now aids in diagnosis of PLOSL, but therapeutics and interventions are still under development.