一种改进左心室疤痕定位与量化的实用算法。

Computing in cardiology Pub Date : 2014-09-07
Brian Zenger, Joshua Cates, Alan Morris, Eugene Kholmovski, Alexander Au, Ravi Ranjan, Nazem Akoum, Chris McGann, Brent Wilson, Nassir Marrouche, Frederick T Han, Rob S MacLeod
{"title":"一种改进左心室疤痕定位与量化的实用算法。","authors":"Brian Zenger,&nbsp;Joshua Cates,&nbsp;Alan Morris,&nbsp;Eugene Kholmovski,&nbsp;Alexander Au,&nbsp;Ravi Ranjan,&nbsp;Nazem Akoum,&nbsp;Chris McGann,&nbsp;Brent Wilson,&nbsp;Nassir Marrouche,&nbsp;Frederick T Han,&nbsp;Rob S MacLeod","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Current approaches to classification of left ventricular scar rely on manual segmentation of myocardial borders and manual classification of scar tissue. In this paper, we propose an novel, semi-automatic approach to segment the left ventricular wall and classify scar tissue using a combination of modern image processing techniques. We obtained high-resolution magnetic resonance angiograms (MRA) and late-gadolinium enhanced magnetic resonance imaging (LGE-MRI) in 14 patients who had ventricular scar from a prior myocardial infarction. We applied (1) a level set-based segmentation approach using a combination of the MRA and LGE-MRI to segment the myocardium and then (2) an automated signal intensity algorithm (Otsu thresholding) to identify ventricular scar tissue. We compared results from both steps to those of expert observers. The LVgeometry using the semi-automated segmentation method had a mean overlap of 94% with the manual segmentations. The scar volumes obtained with the Otsu method correlated with the expert observer scar volumes (Dice comparison coefficient of 0.85± 0.11). This proof of concept segmentation pipeline provides a more objective method for identifying scar in the left ventricle than manual approaches.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"2014 ","pages":"105-108"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4593325/pdf/nihms687031.pdf","citationCount":"0","resultStr":"{\"title\":\"A Practical Algorithm for Improving Localization and Quantification of Left Ventricular Scar.\",\"authors\":\"Brian Zenger,&nbsp;Joshua Cates,&nbsp;Alan Morris,&nbsp;Eugene Kholmovski,&nbsp;Alexander Au,&nbsp;Ravi Ranjan,&nbsp;Nazem Akoum,&nbsp;Chris McGann,&nbsp;Brent Wilson,&nbsp;Nassir Marrouche,&nbsp;Frederick T Han,&nbsp;Rob S MacLeod\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current approaches to classification of left ventricular scar rely on manual segmentation of myocardial borders and manual classification of scar tissue. In this paper, we propose an novel, semi-automatic approach to segment the left ventricular wall and classify scar tissue using a combination of modern image processing techniques. We obtained high-resolution magnetic resonance angiograms (MRA) and late-gadolinium enhanced magnetic resonance imaging (LGE-MRI) in 14 patients who had ventricular scar from a prior myocardial infarction. We applied (1) a level set-based segmentation approach using a combination of the MRA and LGE-MRI to segment the myocardium and then (2) an automated signal intensity algorithm (Otsu thresholding) to identify ventricular scar tissue. We compared results from both steps to those of expert observers. The LVgeometry using the semi-automated segmentation method had a mean overlap of 94% with the manual segmentations. The scar volumes obtained with the Otsu method correlated with the expert observer scar volumes (Dice comparison coefficient of 0.85± 0.11). This proof of concept segmentation pipeline provides a more objective method for identifying scar in the left ventricle than manual approaches.</p>\",\"PeriodicalId\":72683,\"journal\":{\"name\":\"Computing in cardiology\",\"volume\":\"2014 \",\"pages\":\"105-108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4593325/pdf/nihms687031.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing in cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前左心室疤痕的分类方法依赖于人工分割心肌边界和人工分类疤痕组织。在本文中,我们提出了一种新的,半自动的方法来分割左心室壁和分类疤痕组织使用现代图像处理技术的组合。我们对14例既往心肌梗死导致心室瘢痕的患者进行了高分辨率磁共振血管造影(MRA)和晚期钆增强磁共振成像(LGE-MRI)。我们应用了(1)基于水平集的分割方法,使用MRA和LGE-MRI相结合来分割心肌,然后(2)自动信号强度算法(Otsu阈值法)来识别心室疤痕组织。我们将这两个步骤的结果与专家观察者的结果进行了比较。使用半自动分割方法的LVgeometry与人工分割的平均重叠度为94%。Otsu法得到的疤痕体积与专家观察者疤痕体积相关(Dice比较系数为0.85±0.11)。这种概念验证分割管道为左心室瘢痕的识别提供了一种比人工方法更客观的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Practical Algorithm for Improving Localization and Quantification of Left Ventricular Scar.

A Practical Algorithm for Improving Localization and Quantification of Left Ventricular Scar.

A Practical Algorithm for Improving Localization and Quantification of Left Ventricular Scar.

Current approaches to classification of left ventricular scar rely on manual segmentation of myocardial borders and manual classification of scar tissue. In this paper, we propose an novel, semi-automatic approach to segment the left ventricular wall and classify scar tissue using a combination of modern image processing techniques. We obtained high-resolution magnetic resonance angiograms (MRA) and late-gadolinium enhanced magnetic resonance imaging (LGE-MRI) in 14 patients who had ventricular scar from a prior myocardial infarction. We applied (1) a level set-based segmentation approach using a combination of the MRA and LGE-MRI to segment the myocardium and then (2) an automated signal intensity algorithm (Otsu thresholding) to identify ventricular scar tissue. We compared results from both steps to those of expert observers. The LVgeometry using the semi-automated segmentation method had a mean overlap of 94% with the manual segmentations. The scar volumes obtained with the Otsu method correlated with the expert observer scar volumes (Dice comparison coefficient of 0.85± 0.11). This proof of concept segmentation pipeline provides a more objective method for identifying scar in the left ventricle than manual approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信