通过聚阴离子TiP2O7涂层改善LiNi0.8Co0.1Mn0.1O2阴极的电化学性能

IF 4.5 3区 化学 Q1 Chemical Engineering
Yi-Chao Wang , Liang Wen , Zhi-Wei Liu , Peng Xu , Si-Lai Zheng , Ming-Guang Liu , Ji-Zhou Kong , Qian-Zhi Wang , Hong-Yu Wei , Fei Zhou , Kostya Ken Ostrikov
{"title":"通过聚阴离子TiP2O7涂层改善LiNi0.8Co0.1Mn0.1O2阴极的电化学性能","authors":"Yi-Chao Wang ,&nbsp;Liang Wen ,&nbsp;Zhi-Wei Liu ,&nbsp;Peng Xu ,&nbsp;Si-Lai Zheng ,&nbsp;Ming-Guang Liu ,&nbsp;Ji-Zhou Kong ,&nbsp;Qian-Zhi Wang ,&nbsp;Hong-Yu Wei ,&nbsp;Fei Zhou ,&nbsp;Kostya Ken Ostrikov","doi":"10.1016/j.jelechem.2023.117710","DOIUrl":null,"url":null,"abstract":"<div><p>Safety issues of common rechargeable Li-ion batteries (LIB) necessitate urgent development of alternative high-performance electrode materials. Lithiated nickel-rich oxides (LiNi<sub>1-x-y</sub>Mn<sub>x</sub>Co<sub>y</sub>O<sub>2</sub>) are promising LIB cathode materials, but they suffer from structural instabilities causing major capacity loss. To address this issue, here we use a robust ethanol-based wet coating process to coat a LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> LIB cathode material with polyanionic compound TiP<sub>2</sub>O<sub>7.</sub> The coating layer does not affect the phase structure of LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> and ensures a remarkable electrochemical performance, evidenced by the high initial Coulombic efficiency, durable cyclic stability, and excellent rate performance. The mechanisms leading to the achieved improvements are related to the effects of the coating layer which improved the Li<sup>+</sup> diffusion capability and the electrochemical polarization. The TiP<sub>2</sub>O<sub>7</sub> layer protects the electrode from the electrolyte by suppressing side reactions such as HF acidic attack and the associated dissolution of transition metal ion. Moreover, the unique three-dimensional (XO<sub>n</sub>)<sup>m-</sup> framework of the TiP<sub>2</sub>O<sub>7</sub> polyanion provides plentiful accommodation sites and channels for the Li-ions diffusion. The demonstrated approach opens new avenues for practical applications of electrochemically active coatings in diverse energy storage devices and systems.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"946 ","pages":"Article 117710"},"PeriodicalIF":4.5000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via polyanionic TiP2O7 coating\",\"authors\":\"Yi-Chao Wang ,&nbsp;Liang Wen ,&nbsp;Zhi-Wei Liu ,&nbsp;Peng Xu ,&nbsp;Si-Lai Zheng ,&nbsp;Ming-Guang Liu ,&nbsp;Ji-Zhou Kong ,&nbsp;Qian-Zhi Wang ,&nbsp;Hong-Yu Wei ,&nbsp;Fei Zhou ,&nbsp;Kostya Ken Ostrikov\",\"doi\":\"10.1016/j.jelechem.2023.117710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Safety issues of common rechargeable Li-ion batteries (LIB) necessitate urgent development of alternative high-performance electrode materials. Lithiated nickel-rich oxides (LiNi<sub>1-x-y</sub>Mn<sub>x</sub>Co<sub>y</sub>O<sub>2</sub>) are promising LIB cathode materials, but they suffer from structural instabilities causing major capacity loss. To address this issue, here we use a robust ethanol-based wet coating process to coat a LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> LIB cathode material with polyanionic compound TiP<sub>2</sub>O<sub>7.</sub> The coating layer does not affect the phase structure of LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> and ensures a remarkable electrochemical performance, evidenced by the high initial Coulombic efficiency, durable cyclic stability, and excellent rate performance. The mechanisms leading to the achieved improvements are related to the effects of the coating layer which improved the Li<sup>+</sup> diffusion capability and the electrochemical polarization. The TiP<sub>2</sub>O<sub>7</sub> layer protects the electrode from the electrolyte by suppressing side reactions such as HF acidic attack and the associated dissolution of transition metal ion. Moreover, the unique three-dimensional (XO<sub>n</sub>)<sup>m-</sup> framework of the TiP<sub>2</sub>O<sub>7</sub> polyanion provides plentiful accommodation sites and channels for the Li-ions diffusion. The demonstrated approach opens new avenues for practical applications of electrochemically active coatings in diverse energy storage devices and systems.</p></div>\",\"PeriodicalId\":50545,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"946 \",\"pages\":\"Article 117710\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665723005702\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665723005702","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

普通可充电锂离子电池(LIB)的安全性问题迫切需要开发替代高性能电极材料。锂化富镍氧化物(LiNi1-x-yMnxCoyO2)是一种很有前途的锂离子电池正极材料,但其结构不稳定导致容量损失较大。为了解决这一问题,我们采用了一种强大的乙醇基湿涂层工艺,将聚阴离子化合物TiP2O7涂覆在LiNi0.8Co0.1Mn0.1O2锂离子电池正极材料上。涂层不影响LiNi0.8Co0.1Mn0.1O2的相结构,具有较高的初始库仑效率、持久的循环稳定性和优异的速率性能,保证了优异的电化学性能。导致这种改善的机制与涂层改善Li+扩散能力和电化学极化的作用有关。TiP2O7层通过抑制氢氟酸侵蚀和伴随的过渡金属离子溶解等副反应来保护电极免受电解液的影响。此外,TiP2O7聚阴离子独特的三维(XOn)m-结构为锂离子的扩散提供了丰富的容纳位点和通道。所展示的方法为电化学活性涂层在各种储能设备和系统中的实际应用开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improving electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via polyanionic TiP2O7 coating

Improving electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via polyanionic TiP2O7 coating

Safety issues of common rechargeable Li-ion batteries (LIB) necessitate urgent development of alternative high-performance electrode materials. Lithiated nickel-rich oxides (LiNi1-x-yMnxCoyO2) are promising LIB cathode materials, but they suffer from structural instabilities causing major capacity loss. To address this issue, here we use a robust ethanol-based wet coating process to coat a LiNi0.8Co0.1Mn0.1O2 LIB cathode material with polyanionic compound TiP2O7. The coating layer does not affect the phase structure of LiNi0.8Co0.1Mn0.1O2 and ensures a remarkable electrochemical performance, evidenced by the high initial Coulombic efficiency, durable cyclic stability, and excellent rate performance. The mechanisms leading to the achieved improvements are related to the effects of the coating layer which improved the Li+ diffusion capability and the electrochemical polarization. The TiP2O7 layer protects the electrode from the electrolyte by suppressing side reactions such as HF acidic attack and the associated dissolution of transition metal ion. Moreover, the unique three-dimensional (XOn)m- framework of the TiP2O7 polyanion provides plentiful accommodation sites and channels for the Li-ions diffusion. The demonstrated approach opens new avenues for practical applications of electrochemically active coatings in diverse energy storage devices and systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electroanalytical Chemistry
Journal of Electroanalytical Chemistry Chemical Engineering-General Chemical Engineering
CiteScore
7.50
自引率
6.70%
发文量
912
审稿时长
>12 weeks
期刊介绍: The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied. Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信