新的统计学习理论范式适用于使用图像和非图像临床数据的乳腺癌诊断/分类。

Walker H Land, John J Heine, Tom Raway, Alda Mizaku, Nataliya Kovalchuk, Jack Y Yang, Mary Qu Yang
{"title":"新的统计学习理论范式适用于使用图像和非图像临床数据的乳腺癌诊断/分类。","authors":"Walker H Land,&nbsp;John J Heine,&nbsp;Tom Raway,&nbsp;Alda Mizaku,&nbsp;Nataliya Kovalchuk,&nbsp;Jack Y Yang,&nbsp;Mary Qu Yang","doi":"10.1504/ijfipm.2008.020183","DOIUrl":null,"url":null,"abstract":"<p><p>The automated decision paradigms presented in this work address the false positive (FP) biopsy occurrence in diagnostic mammography. An EP/ES stochastic hybrid and two kernelized Partial Least Squares (K-PLS) paradigms were investigated with following studies: methodology performance comparisonsautomated diagnostic accuracy assessments with two data sets. The findings showed: the new hybrid produced comparable results more rapidlythe new K-PLS paradigms train and operate Essentially in real time for the data sets studied. Both advancements are essential components for eventually achieving the FP reduction goal, while maintaining acceptable diagnostic sensitivities.</p>","PeriodicalId":88259,"journal":{"name":"International journal of functional informatics and personalised medicine","volume":"1 2","pages":"111-139"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijfipm.2008.020183","citationCount":"1","resultStr":"{\"title\":\"New statistical learning theory paradigms adapted to breast cancer diagnosis/classification using image and non-image clinical data.\",\"authors\":\"Walker H Land,&nbsp;John J Heine,&nbsp;Tom Raway,&nbsp;Alda Mizaku,&nbsp;Nataliya Kovalchuk,&nbsp;Jack Y Yang,&nbsp;Mary Qu Yang\",\"doi\":\"10.1504/ijfipm.2008.020183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The automated decision paradigms presented in this work address the false positive (FP) biopsy occurrence in diagnostic mammography. An EP/ES stochastic hybrid and two kernelized Partial Least Squares (K-PLS) paradigms were investigated with following studies: methodology performance comparisonsautomated diagnostic accuracy assessments with two data sets. The findings showed: the new hybrid produced comparable results more rapidlythe new K-PLS paradigms train and operate Essentially in real time for the data sets studied. Both advancements are essential components for eventually achieving the FP reduction goal, while maintaining acceptable diagnostic sensitivities.</p>\",\"PeriodicalId\":88259,\"journal\":{\"name\":\"International journal of functional informatics and personalised medicine\",\"volume\":\"1 2\",\"pages\":\"111-139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/ijfipm.2008.020183\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of functional informatics and personalised medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijfipm.2008.020183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of functional informatics and personalised medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijfipm.2008.020183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中提出的自动决策范式解决假阳性(FP)活检发生在诊断乳房x光检查。研究了EP/ES随机混合模型和两个核化偏最小二乘(K-PLS)模型,并进行了以下研究:方法性能比较和两组数据集的自动诊断准确性评估。研究结果表明:新的混合产生可比的结果更快,新的K-PLS范式训练和运行基本上是实时的数据集研究。这两项进展都是最终实现减少FP目标的重要组成部分,同时保持可接受的诊断灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New statistical learning theory paradigms adapted to breast cancer diagnosis/classification using image and non-image clinical data.

The automated decision paradigms presented in this work address the false positive (FP) biopsy occurrence in diagnostic mammography. An EP/ES stochastic hybrid and two kernelized Partial Least Squares (K-PLS) paradigms were investigated with following studies: methodology performance comparisonsautomated diagnostic accuracy assessments with two data sets. The findings showed: the new hybrid produced comparable results more rapidlythe new K-PLS paradigms train and operate Essentially in real time for the data sets studied. Both advancements are essential components for eventually achieving the FP reduction goal, while maintaining acceptable diagnostic sensitivities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信