Michael Moeller;Martin Benning;Carola Schönlieb;Daniel Cremers
{"title":"变分深度离焦重建","authors":"Michael Moeller;Martin Benning;Carola Schönlieb;Daniel Cremers","doi":"10.1109/TIP.2015.2479469","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of reconstructing a depth map from a sequence of differently focused images, also known as depth from focus (DFF) or shape from focus. We propose to state the DFF problem as a variational problem, including a smooth but nonconvex data fidelity term and a convex nonsmooth regularization, which makes the method robust to noise and leads to more realistic depth maps. In addition, we propose to solve the nonconvex minimization problem with a linearized alternating directions method of multipliers, allowing to minimize the energy very efficiently. A numerical comparison to classical methods on simulated as well as on real data is presented.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TIP.2015.2479469","citationCount":"93","resultStr":"{\"title\":\"Variational Depth From Focus Reconstruction\",\"authors\":\"Michael Moeller;Martin Benning;Carola Schönlieb;Daniel Cremers\",\"doi\":\"10.1109/TIP.2015.2479469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the problem of reconstructing a depth map from a sequence of differently focused images, also known as depth from focus (DFF) or shape from focus. We propose to state the DFF problem as a variational problem, including a smooth but nonconvex data fidelity term and a convex nonsmooth regularization, which makes the method robust to noise and leads to more realistic depth maps. In addition, we propose to solve the nonconvex minimization problem with a linearized alternating directions method of multipliers, allowing to minimize the energy very efficiently. A numerical comparison to classical methods on simulated as well as on real data is presented.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TIP.2015.2479469\",\"citationCount\":\"93\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/7271087/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/7271087/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper deals with the problem of reconstructing a depth map from a sequence of differently focused images, also known as depth from focus (DFF) or shape from focus. We propose to state the DFF problem as a variational problem, including a smooth but nonconvex data fidelity term and a convex nonsmooth regularization, which makes the method robust to noise and leads to more realistic depth maps. In addition, we propose to solve the nonconvex minimization problem with a linearized alternating directions method of multipliers, allowing to minimize the energy very efficiently. A numerical comparison to classical methods on simulated as well as on real data is presented.