纤维水泥壁板切割粉尘的生成速率及粒径相关性结晶二氧化硅含量表征。

Annals of Occupational Hygiene Pub Date : 2016-03-01 Epub Date: 2015-09-21 DOI:10.1093/annhyg/mev066
Chaolong Qi, Alan Echt, Michael G Gressel
{"title":"纤维水泥壁板切割粉尘的生成速率及粒径相关性结晶二氧化硅含量表征。","authors":"Chaolong Qi,&nbsp;Alan Echt,&nbsp;Michael G Gressel","doi":"10.1093/annhyg/mev066","DOIUrl":null,"url":null,"abstract":"<p><p>A laboratory testing system was developed to systematically characterize the dust generation rate and size-dependent crystalline silica content when cutting or shaping silica containing materials. The tests of cutting fiber cement siding in this system verify that it provides high test repeatability, making it suitable for the targeted characterizations. The mass-based size distributions obtained from a gravimetric-based instrument and a direct reading instrument both show bimodal lognormal distributions with a larger mode ~13 µm and another mode <5 µm for the dusts from cutting four different brands of fiber cement siding. The generation rates of respirable dust obtained from the two instruments are comparable, and the results from each instrument are similar for the four brands. The silica content in the airborne dusts, however, strongly depends on the amount of silica used in the respective product. It is also observed that the silica content in the airborne dust from cutting the four brands of fiber cement siding showed the same trend of an increase with the aerodynamic diameter of the dust, approaching the silica content levels found in their respective bulk samples. Combining the results for both the dust size distribution and size-dependent silica content, it is found that most of the respirable crystalline silica (RCS) resides in the dust ~2.5 µm in aerodynamic diameter. These results would help guide the development of specific engineering control measures targeted at lowering workers' exposure to RCS while cutting fiber cement siding. With the high repeatability using the laboratory testing system, the dust generation rate could then be characterized under different operating conditions, and with the deployment of various engineering control measures. This would greatly facilitate the systematic evaluation of the control effectiveness and the selection of the optimal control solutions for field trials. </p>","PeriodicalId":8458,"journal":{"name":"Annals of Occupational Hygiene","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/annhyg/mev066","citationCount":"9","resultStr":"{\"title\":\"On the Characterization of the Generation Rate and Size-Dependent Crystalline Silica Content of the Dust from Cutting Fiber Cement Siding.\",\"authors\":\"Chaolong Qi,&nbsp;Alan Echt,&nbsp;Michael G Gressel\",\"doi\":\"10.1093/annhyg/mev066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A laboratory testing system was developed to systematically characterize the dust generation rate and size-dependent crystalline silica content when cutting or shaping silica containing materials. The tests of cutting fiber cement siding in this system verify that it provides high test repeatability, making it suitable for the targeted characterizations. The mass-based size distributions obtained from a gravimetric-based instrument and a direct reading instrument both show bimodal lognormal distributions with a larger mode ~13 µm and another mode <5 µm for the dusts from cutting four different brands of fiber cement siding. The generation rates of respirable dust obtained from the two instruments are comparable, and the results from each instrument are similar for the four brands. The silica content in the airborne dusts, however, strongly depends on the amount of silica used in the respective product. It is also observed that the silica content in the airborne dust from cutting the four brands of fiber cement siding showed the same trend of an increase with the aerodynamic diameter of the dust, approaching the silica content levels found in their respective bulk samples. Combining the results for both the dust size distribution and size-dependent silica content, it is found that most of the respirable crystalline silica (RCS) resides in the dust ~2.5 µm in aerodynamic diameter. These results would help guide the development of specific engineering control measures targeted at lowering workers' exposure to RCS while cutting fiber cement siding. With the high repeatability using the laboratory testing system, the dust generation rate could then be characterized under different operating conditions, and with the deployment of various engineering control measures. This would greatly facilitate the systematic evaluation of the control effectiveness and the selection of the optimal control solutions for field trials. </p>\",\"PeriodicalId\":8458,\"journal\":{\"name\":\"Annals of Occupational Hygiene\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/annhyg/mev066\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Occupational Hygiene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/annhyg/mev066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Occupational Hygiene","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/annhyg/mev066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/9/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

开发了一个实验室测试系统,以系统地表征切割或成型含二氧化硅材料时的粉尘产生率和尺寸相关的结晶二氧化硅含量。在该系统中切割纤维水泥壁板的测试证明,该系统具有很高的测试重复性,适合于目标表征。重量仪和直读仪测得的基于质量的尺寸分布均表现为双峰对数正态分布,模态较大~13µm,另一模态较大
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Characterization of the Generation Rate and Size-Dependent Crystalline Silica Content of the Dust from Cutting Fiber Cement Siding.

On the Characterization of the Generation Rate and Size-Dependent Crystalline Silica Content of the Dust from Cutting Fiber Cement Siding.

On the Characterization of the Generation Rate and Size-Dependent Crystalline Silica Content of the Dust from Cutting Fiber Cement Siding.

On the Characterization of the Generation Rate and Size-Dependent Crystalline Silica Content of the Dust from Cutting Fiber Cement Siding.

A laboratory testing system was developed to systematically characterize the dust generation rate and size-dependent crystalline silica content when cutting or shaping silica containing materials. The tests of cutting fiber cement siding in this system verify that it provides high test repeatability, making it suitable for the targeted characterizations. The mass-based size distributions obtained from a gravimetric-based instrument and a direct reading instrument both show bimodal lognormal distributions with a larger mode ~13 µm and another mode <5 µm for the dusts from cutting four different brands of fiber cement siding. The generation rates of respirable dust obtained from the two instruments are comparable, and the results from each instrument are similar for the four brands. The silica content in the airborne dusts, however, strongly depends on the amount of silica used in the respective product. It is also observed that the silica content in the airborne dust from cutting the four brands of fiber cement siding showed the same trend of an increase with the aerodynamic diameter of the dust, approaching the silica content levels found in their respective bulk samples. Combining the results for both the dust size distribution and size-dependent silica content, it is found that most of the respirable crystalline silica (RCS) resides in the dust ~2.5 µm in aerodynamic diameter. These results would help guide the development of specific engineering control measures targeted at lowering workers' exposure to RCS while cutting fiber cement siding. With the high repeatability using the laboratory testing system, the dust generation rate could then be characterized under different operating conditions, and with the deployment of various engineering control measures. This would greatly facilitate the systematic evaluation of the control effectiveness and the selection of the optimal control solutions for field trials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信