{"title":"实验验证的细胞内人蛋白稳定性与其溶剂可及表面特征的关系。","authors":"Xiaofeng Song, Yan Jing, Ping Han","doi":"10.1504/ijdmb.2015.066338","DOIUrl":null,"url":null,"abstract":"<p><p>Protein degradation is critical for most cellular processes, and investigating the degradation signals in the sequence and structure is beneficial for analysing the protein stability. In this paper, we investigated in depth the intrinsic factors affecting the protein degradation based on the sequence and structure features. The results indicated that there are more hydrophobic residues on the surface of short-lived protein than the long-lived protein. The secondary structure such as coil tends to be on the surface of short-lived protein. There are more serine phosphorylation sites on the short-lived protein surface, and there is higher possibility for the short-lived proteins to start the degradation by signal of PEST motif than long-lived proteins. We also found that almost all of N terminal residues are exposed to be on the surface; therefore, the specific features of the solvent accessible surface residues are the key factors affecting intracellular protein stability.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijdmb.2015.066338","citationCount":"0","resultStr":"{\"title\":\"The relationship between experimentally validated intracellular human protein stability and the features of its solvent accessible surface.\",\"authors\":\"Xiaofeng Song, Yan Jing, Ping Han\",\"doi\":\"10.1504/ijdmb.2015.066338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein degradation is critical for most cellular processes, and investigating the degradation signals in the sequence and structure is beneficial for analysing the protein stability. In this paper, we investigated in depth the intrinsic factors affecting the protein degradation based on the sequence and structure features. The results indicated that there are more hydrophobic residues on the surface of short-lived protein than the long-lived protein. The secondary structure such as coil tends to be on the surface of short-lived protein. There are more serine phosphorylation sites on the short-lived protein surface, and there is higher possibility for the short-lived proteins to start the degradation by signal of PEST motif than long-lived proteins. We also found that almost all of N terminal residues are exposed to be on the surface; therefore, the specific features of the solvent accessible surface residues are the key factors affecting intracellular protein stability.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/ijdmb.2015.066338\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1504/ijdmb.2015.066338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/ijdmb.2015.066338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The relationship between experimentally validated intracellular human protein stability and the features of its solvent accessible surface.
Protein degradation is critical for most cellular processes, and investigating the degradation signals in the sequence and structure is beneficial for analysing the protein stability. In this paper, we investigated in depth the intrinsic factors affecting the protein degradation based on the sequence and structure features. The results indicated that there are more hydrophobic residues on the surface of short-lived protein than the long-lived protein. The secondary structure such as coil tends to be on the surface of short-lived protein. There are more serine phosphorylation sites on the short-lived protein surface, and there is higher possibility for the short-lived proteins to start the degradation by signal of PEST motif than long-lived proteins. We also found that almost all of N terminal residues are exposed to be on the surface; therefore, the specific features of the solvent accessible surface residues are the key factors affecting intracellular protein stability.