考虑到邻省效应和随机噪声的 COVID-19 数据现象学模型。

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Julia Calatayud, Marc Jornet, Jorge Mateu
{"title":"考虑到邻省效应和随机噪声的 COVID-19 数据现象学模型。","authors":"Julia Calatayud, Marc Jornet, Jorge Mateu","doi":"10.1111/stan.12278","DOIUrl":null,"url":null,"abstract":"<p><p>We model the incidence of the COVID-19 disease during the first wave of the epidemic in Castilla-Leon (Spain). Within-province dynamics may be governed by a generalized logistic map, but this lacks of spatial structure. To couple the provinces, we relate the daily new infections through a density-independent parameter that entails positive spatial correlation. Pointwise values of the input parameters are fitted by an optimization procedure. To accommodate the significant variability in the daily data, with abruptly increasing and decreasing magnitudes, a random noise is incorporated into the model, whose parameters are calibrated by maximum likelihood estimation. The calculated paths of the stochastic response and the probabilistic regions are in good agreement with the data.</p>","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9538456/pdf/STAN-9999-0.pdf","citationCount":"0","resultStr":"{\"title\":\"A phenomenological model for COVID-19 data taking into account neighboring-provinces effect and random noise.\",\"authors\":\"Julia Calatayud, Marc Jornet, Jorge Mateu\",\"doi\":\"10.1111/stan.12278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We model the incidence of the COVID-19 disease during the first wave of the epidemic in Castilla-Leon (Spain). Within-province dynamics may be governed by a generalized logistic map, but this lacks of spatial structure. To couple the provinces, we relate the daily new infections through a density-independent parameter that entails positive spatial correlation. Pointwise values of the input parameters are fitted by an optimization procedure. To accommodate the significant variability in the daily data, with abruptly increasing and decreasing magnitudes, a random noise is incorporated into the model, whose parameters are calibrated by maximum likelihood estimation. The calculated paths of the stochastic response and the probabilistic regions are in good agreement with the data.</p>\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9538456/pdf/STAN-9999-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12278\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12278","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们模拟了卡斯蒂利亚-莱昂(西班牙)第一波疫情期间 COVID-19 的发病率。省内动态可能受广义逻辑图支配,但缺乏空间结构。为了将各省联系起来,我们通过一个与密度无关的参数将每日新感染病例联系起来,该参数具有正空间相关性。输入参数的点值通过优化程序进行拟合。为适应每日数据的显著变化(幅度突然增大或减小),我们在模型中加入了随机噪声,并通过最大似然估计法对其参数进行校准。计算得出的随机响应路径和概率区域与数据十分吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A phenomenological model for COVID-19 data taking into account neighboring-provinces effect and random noise.

We model the incidence of the COVID-19 disease during the first wave of the epidemic in Castilla-Leon (Spain). Within-province dynamics may be governed by a generalized logistic map, but this lacks of spatial structure. To couple the provinces, we relate the daily new infections through a density-independent parameter that entails positive spatial correlation. Pointwise values of the input parameters are fitted by an optimization procedure. To accommodate the significant variability in the daily data, with abruptly increasing and decreasing magnitudes, a random noise is incorporated into the model, whose parameters are calibrated by maximum likelihood estimation. The calculated paths of the stochastic response and the probabilistic regions are in good agreement with the data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信