垂直排列的尖锐硅纳米锥的大型密集周期阵列

IF 4.703 3区 材料科学
Dirk Jonker, Erwin J. W. Berenschot, Niels R. Tas, Roald M. Tiggelaar, Arie van Houselt, Han J. G. E. Gardeniers
{"title":"垂直排列的尖锐硅纳米锥的大型密集周期阵列","authors":"Dirk Jonker,&nbsp;Erwin J. W. Berenschot,&nbsp;Niels R. Tas,&nbsp;Roald M. Tiggelaar,&nbsp;Arie van Houselt,&nbsp;Han J. G. E. Gardeniers","doi":"10.1186/s11671-022-03735-y","DOIUrl":null,"url":null,"abstract":"<div><p>Convex cylindrical silicon nanostructures, also referred to as silicon nanocones, find their value in many applications ranging from photovoltaics to nanofluidics, nanophotonics, and nanoelectronic applications. To fabricate silicon nanocones, both bottom-up and top-down methods can be used. The top-down method presented in this work relies on pre-shaping of silicon nanowires by ion beam etching followed by self-limited thermal oxidation. The combination of pre-shaping and oxidation obtains high-density, high aspect ratio, periodic, and vertically aligned sharp single-crystalline silicon nanocones at the wafer-scale. The homogeneity of the presented nanocones is unprecedented and may give rise to applications where numerical modeling and experiments are combined without assumptions about morphology of the nanocone. The silicon nanocones are organized in a square periodic lattice, with 250 nm pitch giving arrays containing 1.6 billion structures per square centimeter. The nanocone arrays were several mm<sup>2</sup> in size and located centimeters apart across a 100-mm-diameter single-crystalline silicon (100) substrate. For single nanocones, tip radii of curvature &lt; 3 nm were measured. The silicon nanocones were vertically aligned, baring a height variation of &lt; 5 nm (&lt; 1%) for seven adjacent nanocones, whereas the height inhomogeneity is &lt; 80 nm (&lt; 16%) across the full wafer scale. The height inhomogeneity can be explained by inhomogeneity present in the radii of the initial columnar polymer mask. The presented method might also be applicable to silicon micro- and nanowires derived through other top-down or bottom-up methods because of the combination of ion beam etching pre-shaping and thermal oxidation sharpening.</p><h3>Graphic abstract</h3><p>A novel method is presented where argon ion beam etching and thermal oxidation sharpening are combined to tailor a high-density single-crystalline silicon nanowire array into a vertically aligned single-crystalline silicon nanocones array with &lt; 3 nm apex radius of curvature tips, at the wafer scale.</p>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"17 1","pages":""},"PeriodicalIF":4.7030,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573847/pdf/","citationCount":"0","resultStr":"{\"title\":\"Large Dense Periodic Arrays of Vertically Aligned Sharp Silicon Nanocones\",\"authors\":\"Dirk Jonker,&nbsp;Erwin J. W. Berenschot,&nbsp;Niels R. Tas,&nbsp;Roald M. Tiggelaar,&nbsp;Arie van Houselt,&nbsp;Han J. G. E. Gardeniers\",\"doi\":\"10.1186/s11671-022-03735-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Convex cylindrical silicon nanostructures, also referred to as silicon nanocones, find their value in many applications ranging from photovoltaics to nanofluidics, nanophotonics, and nanoelectronic applications. To fabricate silicon nanocones, both bottom-up and top-down methods can be used. The top-down method presented in this work relies on pre-shaping of silicon nanowires by ion beam etching followed by self-limited thermal oxidation. The combination of pre-shaping and oxidation obtains high-density, high aspect ratio, periodic, and vertically aligned sharp single-crystalline silicon nanocones at the wafer-scale. The homogeneity of the presented nanocones is unprecedented and may give rise to applications where numerical modeling and experiments are combined without assumptions about morphology of the nanocone. The silicon nanocones are organized in a square periodic lattice, with 250 nm pitch giving arrays containing 1.6 billion structures per square centimeter. The nanocone arrays were several mm<sup>2</sup> in size and located centimeters apart across a 100-mm-diameter single-crystalline silicon (100) substrate. For single nanocones, tip radii of curvature &lt; 3 nm were measured. The silicon nanocones were vertically aligned, baring a height variation of &lt; 5 nm (&lt; 1%) for seven adjacent nanocones, whereas the height inhomogeneity is &lt; 80 nm (&lt; 16%) across the full wafer scale. The height inhomogeneity can be explained by inhomogeneity present in the radii of the initial columnar polymer mask. The presented method might also be applicable to silicon micro- and nanowires derived through other top-down or bottom-up methods because of the combination of ion beam etching pre-shaping and thermal oxidation sharpening.</p><h3>Graphic abstract</h3><p>A novel method is presented where argon ion beam etching and thermal oxidation sharpening are combined to tailor a high-density single-crystalline silicon nanowire array into a vertically aligned single-crystalline silicon nanocones array with &lt; 3 nm apex radius of curvature tips, at the wafer scale.</p>\\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\\n </div>\",\"PeriodicalId\":715,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7030,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573847/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-022-03735-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-022-03735-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

凸圆柱形硅纳米结构(也称为硅纳米锥)在光伏、纳米流体、纳米光子学和纳米电子学等许多应用领域都具有重要价值。要制造硅纳米锥,可以采用自下而上和自上而下两种方法。本研究中介绍的自上而下的方法是通过离子束蚀刻对硅纳米线进行预成型,然后进行自限性热氧化。预成型和氧化相结合,可在晶圆级获得高密度、高纵横比、周期性和垂直排列的尖锐单晶硅纳米锥。所展示的纳米锥的均匀性是前所未有的,可用于将数值建模与实验相结合,而无需对纳米锥的形态进行假设。硅纳米锥以正方形周期晶格排列,间距为 250 纳米,每平方厘米阵列含有 16 亿个结构。纳米锥阵列大小为几平方毫米,在直径为 100 毫米的单晶硅 (100) 基质上相隔几厘米。单个纳米锥的尖端曲率半径为 3 纳米。硅纳米锥垂直排列,七个相邻纳米锥的高度变化为 5 nm(1%),而整个晶片尺度的高度不均匀度为 80 nm(16%)。高度不均匀性可以用初始柱状聚合物掩膜半径的不均匀性来解释。由于结合了离子束蚀刻预成型和热氧化锐化,所介绍的方法也可能适用于通过其他自上而下或自下而上的方法获得的硅微线和纳米线。图文摘要介绍了一种新方法,即结合氩离子束蚀刻和热氧化锐化,在晶圆尺度上将高密度单晶硅纳米线阵列定制为垂直排列的单晶硅纳米锥阵列,其顶点曲率尖端半径为 < 3 nm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Dense Periodic Arrays of Vertically Aligned Sharp Silicon Nanocones

Convex cylindrical silicon nanostructures, also referred to as silicon nanocones, find their value in many applications ranging from photovoltaics to nanofluidics, nanophotonics, and nanoelectronic applications. To fabricate silicon nanocones, both bottom-up and top-down methods can be used. The top-down method presented in this work relies on pre-shaping of silicon nanowires by ion beam etching followed by self-limited thermal oxidation. The combination of pre-shaping and oxidation obtains high-density, high aspect ratio, periodic, and vertically aligned sharp single-crystalline silicon nanocones at the wafer-scale. The homogeneity of the presented nanocones is unprecedented and may give rise to applications where numerical modeling and experiments are combined without assumptions about morphology of the nanocone. The silicon nanocones are organized in a square periodic lattice, with 250 nm pitch giving arrays containing 1.6 billion structures per square centimeter. The nanocone arrays were several mm2 in size and located centimeters apart across a 100-mm-diameter single-crystalline silicon (100) substrate. For single nanocones, tip radii of curvature < 3 nm were measured. The silicon nanocones were vertically aligned, baring a height variation of < 5 nm (< 1%) for seven adjacent nanocones, whereas the height inhomogeneity is < 80 nm (< 16%) across the full wafer scale. The height inhomogeneity can be explained by inhomogeneity present in the radii of the initial columnar polymer mask. The presented method might also be applicable to silicon micro- and nanowires derived through other top-down or bottom-up methods because of the combination of ion beam etching pre-shaping and thermal oxidation sharpening.

Graphic abstract

A novel method is presented where argon ion beam etching and thermal oxidation sharpening are combined to tailor a high-density single-crystalline silicon nanowire array into a vertically aligned single-crystalline silicon nanocones array with < 3 nm apex radius of curvature tips, at the wafer scale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
15.00
自引率
0.00%
发文量
110
审稿时长
2.5 months
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信