Md Bashir Uddin, Yuejin Liang, Shengjun Shao, Sunil Palani, Michael McKelvey, Scott C Weaver, Keer Sun
{"title":"I型IFN信号保护小鼠免受致命的SARS-CoV-2神经侵袭","authors":"Md Bashir Uddin, Yuejin Liang, Shengjun Shao, Sunil Palani, Michael McKelvey, Scott C Weaver, Keer Sun","doi":"10.4049/immunohorizons.2200065","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple organ damage is common in patients with severe COVID-19, even though the underlying pathogenic mechanisms remain unclear. Acute viral infection typically activates type I IFN (IFN-I) signaling. The antiviral role of IFN-I is well characterized in vitro. However, our understanding of how IFN-I regulates host immune response to SARS-CoV-2 infection in vivo is incomplete. Using a human ACE2-transgenic mouse model, we show in the present study that IFN-I receptor signaling is essential for protection against the acute lethality of SARS-CoV-2 in mice. Interestingly, although IFN-I signaling limits viral replication in the lung, the primary infection site, it is dispensable for efficient viral clearance at the adaptive phase of SARS-CoV-2 infection. Conversely, we found that in the absence of IFN-I receptor signaling, the extreme animal lethality is consistent with heightened infectious virus and prominent pathological manifestations in the brain. Taken together, our results in this study demonstrate that IFN-I receptor signaling is required for restricting virus neuroinvasion, thereby mitigating COVID-19 severity.</p>","PeriodicalId":13448,"journal":{"name":"ImmunoHorizons","volume":" ","pages":"716-721"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Type I IFN Signaling Protects Mice from Lethal SARS-CoV-2 Neuroinvasion.\",\"authors\":\"Md Bashir Uddin, Yuejin Liang, Shengjun Shao, Sunil Palani, Michael McKelvey, Scott C Weaver, Keer Sun\",\"doi\":\"10.4049/immunohorizons.2200065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple organ damage is common in patients with severe COVID-19, even though the underlying pathogenic mechanisms remain unclear. Acute viral infection typically activates type I IFN (IFN-I) signaling. The antiviral role of IFN-I is well characterized in vitro. However, our understanding of how IFN-I regulates host immune response to SARS-CoV-2 infection in vivo is incomplete. Using a human ACE2-transgenic mouse model, we show in the present study that IFN-I receptor signaling is essential for protection against the acute lethality of SARS-CoV-2 in mice. Interestingly, although IFN-I signaling limits viral replication in the lung, the primary infection site, it is dispensable for efficient viral clearance at the adaptive phase of SARS-CoV-2 infection. Conversely, we found that in the absence of IFN-I receptor signaling, the extreme animal lethality is consistent with heightened infectious virus and prominent pathological manifestations in the brain. Taken together, our results in this study demonstrate that IFN-I receptor signaling is required for restricting virus neuroinvasion, thereby mitigating COVID-19 severity.</p>\",\"PeriodicalId\":13448,\"journal\":{\"name\":\"ImmunoHorizons\",\"volume\":\" \",\"pages\":\"716-721\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ImmunoHorizons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4049/immunohorizons.2200065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoHorizons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4049/immunohorizons.2200065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Type I IFN Signaling Protects Mice from Lethal SARS-CoV-2 Neuroinvasion.
Multiple organ damage is common in patients with severe COVID-19, even though the underlying pathogenic mechanisms remain unclear. Acute viral infection typically activates type I IFN (IFN-I) signaling. The antiviral role of IFN-I is well characterized in vitro. However, our understanding of how IFN-I regulates host immune response to SARS-CoV-2 infection in vivo is incomplete. Using a human ACE2-transgenic mouse model, we show in the present study that IFN-I receptor signaling is essential for protection against the acute lethality of SARS-CoV-2 in mice. Interestingly, although IFN-I signaling limits viral replication in the lung, the primary infection site, it is dispensable for efficient viral clearance at the adaptive phase of SARS-CoV-2 infection. Conversely, we found that in the absence of IFN-I receptor signaling, the extreme animal lethality is consistent with heightened infectious virus and prominent pathological manifestations in the brain. Taken together, our results in this study demonstrate that IFN-I receptor signaling is required for restricting virus neuroinvasion, thereby mitigating COVID-19 severity.