Yi Geng, Deep Shrestha, Vijaya Yajnanarayana, Erik Dahlman, Ali Behravan
{"title":"利用无线接入技术联合散射体定位和物质识别。","authors":"Yi Geng, Deep Shrestha, Vijaya Yajnanarayana, Erik Dahlman, Ali Behravan","doi":"10.1186/s13638-022-02167-7","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular network technologies and radar sensing technologies have been developing in parallel for decades. Instead of developing two individual technologies, the 6G cellular network is expected to naturally support both communication and radar functionalities with shared hardware and carrier frequencies. In this regard, radio access technology (RAT)-based scatterer localization system is one of the important aspects of joint communication and sensing system that uses communication signals between transceivers to determine the location of scatterers in and around the propagation paths. In this article, we first identify the challenges of the RAT-based scatterer localization system and then present single- and multiple-bounce reflection loss simulation results for three common building materials in indoor environments. We also propose two novel methods to jointly localize and identify the type of the scatterers in a rich scattering environment.</p>","PeriodicalId":12040,"journal":{"name":"EURASIP Journal on Wireless Communications and Networking","volume":" ","pages":"87"},"PeriodicalIF":2.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483538/pdf/","citationCount":"3","resultStr":"{\"title\":\"Joint scatterer localization and material identification using radio access technology.\",\"authors\":\"Yi Geng, Deep Shrestha, Vijaya Yajnanarayana, Erik Dahlman, Ali Behravan\",\"doi\":\"10.1186/s13638-022-02167-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellular network technologies and radar sensing technologies have been developing in parallel for decades. Instead of developing two individual technologies, the 6G cellular network is expected to naturally support both communication and radar functionalities with shared hardware and carrier frequencies. In this regard, radio access technology (RAT)-based scatterer localization system is one of the important aspects of joint communication and sensing system that uses communication signals between transceivers to determine the location of scatterers in and around the propagation paths. In this article, we first identify the challenges of the RAT-based scatterer localization system and then present single- and multiple-bounce reflection loss simulation results for three common building materials in indoor environments. We also propose two novel methods to jointly localize and identify the type of the scatterers in a rich scattering environment.</p>\",\"PeriodicalId\":12040,\"journal\":{\"name\":\"EURASIP Journal on Wireless Communications and Networking\",\"volume\":\" \",\"pages\":\"87\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483538/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Wireless Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s13638-022-02167-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Wireless Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13638-022-02167-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Joint scatterer localization and material identification using radio access technology.
Cellular network technologies and radar sensing technologies have been developing in parallel for decades. Instead of developing two individual technologies, the 6G cellular network is expected to naturally support both communication and radar functionalities with shared hardware and carrier frequencies. In this regard, radio access technology (RAT)-based scatterer localization system is one of the important aspects of joint communication and sensing system that uses communication signals between transceivers to determine the location of scatterers in and around the propagation paths. In this article, we first identify the challenges of the RAT-based scatterer localization system and then present single- and multiple-bounce reflection loss simulation results for three common building materials in indoor environments. We also propose two novel methods to jointly localize and identify the type of the scatterers in a rich scattering environment.
期刊介绍:
The overall aim of the EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN) is to bring together science and applications of wireless communications and networking technologies with emphasis on signal processing techniques and tools. It is directed at both practicing engineers and academic researchers. EURASIP Journal on Wireless Communications and Networking will highlight the continued growth and new challenges in wireless technology, for both application development and basic research. Articles should emphasize original results relating to the theory and/or applications of wireless communications and networking. Review articles, especially those emphasizing multidisciplinary views of communications and networking, are also welcome. EURASIP Journal on Wireless Communications and Networking employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process.
The journal is an Open Access journal since 2004.