{"title":"利用深度学习方法预测医院门诊预约的缺勤情况。","authors":"M Dashtban, Weizi Li","doi":"10.1080/20476965.2021.1924085","DOIUrl":null,"url":null,"abstract":"<p><p>The hospital outpatient non-attendance imposes a substantial financial burden on hospitals and roots in multiple diverse reasons. This research aims to build an advanced predictive model for predicting non-attendance regarding the whole spectrum of probable contributing factors to non-attendance that could be collated from heterogeneous sources including electronic patients records and external non-hospital data. We proposed a new non-attendance prediction model based on deep neural networks and machine learning models. The proposed approach works upon sparse stacked denoising autoencoders (SDAEs) to learn the underlying manifold of data and thereby compacting information and providing a better representation that can be utilised afterwards by other learning models as well. The proposed approach is evaluated over real hospital data and compared with several well-known and scalable machine learning models. The evaluation results reveal the proposed approach with softmax layer and logistic regression outperforms other methods in practice.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/20476965.2021.1924085","citationCount":"7","resultStr":"{\"title\":\"Predicting non-attendance in hospital outpatient appointments using deep learning approach.\",\"authors\":\"M Dashtban, Weizi Li\",\"doi\":\"10.1080/20476965.2021.1924085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The hospital outpatient non-attendance imposes a substantial financial burden on hospitals and roots in multiple diverse reasons. This research aims to build an advanced predictive model for predicting non-attendance regarding the whole spectrum of probable contributing factors to non-attendance that could be collated from heterogeneous sources including electronic patients records and external non-hospital data. We proposed a new non-attendance prediction model based on deep neural networks and machine learning models. The proposed approach works upon sparse stacked denoising autoencoders (SDAEs) to learn the underlying manifold of data and thereby compacting information and providing a better representation that can be utilised afterwards by other learning models as well. The proposed approach is evaluated over real hospital data and compared with several well-known and scalable machine learning models. The evaluation results reveal the proposed approach with softmax layer and logistic regression outperforms other methods in practice.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/20476965.2021.1924085\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20476965.2021.1924085\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20476965.2021.1924085","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Predicting non-attendance in hospital outpatient appointments using deep learning approach.
The hospital outpatient non-attendance imposes a substantial financial burden on hospitals and roots in multiple diverse reasons. This research aims to build an advanced predictive model for predicting non-attendance regarding the whole spectrum of probable contributing factors to non-attendance that could be collated from heterogeneous sources including electronic patients records and external non-hospital data. We proposed a new non-attendance prediction model based on deep neural networks and machine learning models. The proposed approach works upon sparse stacked denoising autoencoders (SDAEs) to learn the underlying manifold of data and thereby compacting information and providing a better representation that can be utilised afterwards by other learning models as well. The proposed approach is evaluated over real hospital data and compared with several well-known and scalable machine learning models. The evaluation results reveal the proposed approach with softmax layer and logistic regression outperforms other methods in practice.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.