{"title":"基于回归的非超自然图形模型贝叶斯估计与结构学习。","authors":"Jami J Mulgrave, Subhashis Ghosal","doi":"10.1002/sam.11576","DOIUrl":null,"url":null,"abstract":"<p><p>A nonparanormal graphical model is a semiparametric generalization of a Gaussian graphical model for continuous variables in which it is assumed that the variables follow a Gaussian graphical model only after some unknown smooth monotone transformations. We consider a Bayesian approach to inference in a nonparanormal graphical model in which we put priors on the unknown transformations through a random series based on B-splines. We use a regression formulation to construct the likelihood through the Cholesky decomposition on the underlying precision matrix of the transformed variables and put shrinkage priors on the regression coefficients. We apply a plug-in variational Bayesian algorithm for learning the sparse precision matrix and compare the performance to a posterior Gibbs sampling scheme in a simulation study. We finally apply the proposed methods to a microarray data set. The proposed methods have better performance as the dimension increases, and in particular, the variational Bayesian approach has the potential to speed up the estimation in the Bayesian nonparanormal graphical model without the Gaussianity assumption while retaining the information to construct the graph.</p>","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"15 5","pages":"611-629"},"PeriodicalIF":2.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455150/pdf/","citationCount":"0","resultStr":"{\"title\":\"Regression-Based Bayesian Estimation and Structure Learning for Nonparanormal Graphical Models.\",\"authors\":\"Jami J Mulgrave, Subhashis Ghosal\",\"doi\":\"10.1002/sam.11576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A nonparanormal graphical model is a semiparametric generalization of a Gaussian graphical model for continuous variables in which it is assumed that the variables follow a Gaussian graphical model only after some unknown smooth monotone transformations. We consider a Bayesian approach to inference in a nonparanormal graphical model in which we put priors on the unknown transformations through a random series based on B-splines. We use a regression formulation to construct the likelihood through the Cholesky decomposition on the underlying precision matrix of the transformed variables and put shrinkage priors on the regression coefficients. We apply a plug-in variational Bayesian algorithm for learning the sparse precision matrix and compare the performance to a posterior Gibbs sampling scheme in a simulation study. We finally apply the proposed methods to a microarray data set. The proposed methods have better performance as the dimension increases, and in particular, the variational Bayesian approach has the potential to speed up the estimation in the Bayesian nonparanormal graphical model without the Gaussianity assumption while retaining the information to construct the graph.</p>\",\"PeriodicalId\":48684,\"journal\":{\"name\":\"Statistical Analysis and Data Mining\",\"volume\":\"15 5\",\"pages\":\"611-629\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455150/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11576\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11576","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Regression-Based Bayesian Estimation and Structure Learning for Nonparanormal Graphical Models.
A nonparanormal graphical model is a semiparametric generalization of a Gaussian graphical model for continuous variables in which it is assumed that the variables follow a Gaussian graphical model only after some unknown smooth monotone transformations. We consider a Bayesian approach to inference in a nonparanormal graphical model in which we put priors on the unknown transformations through a random series based on B-splines. We use a regression formulation to construct the likelihood through the Cholesky decomposition on the underlying precision matrix of the transformed variables and put shrinkage priors on the regression coefficients. We apply a plug-in variational Bayesian algorithm for learning the sparse precision matrix and compare the performance to a posterior Gibbs sampling scheme in a simulation study. We finally apply the proposed methods to a microarray data set. The proposed methods have better performance as the dimension increases, and in particular, the variational Bayesian approach has the potential to speed up the estimation in the Bayesian nonparanormal graphical model without the Gaussianity assumption while retaining the information to construct the graph.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.