Jamshed Khan, Marek Kokot, Sebastian Deorowicz, Rob Patro
{"title":"使用Cuttlefish构建压缩de Bruijn图的可伸缩、超快速和低内存。","authors":"Jamshed Khan, Marek Kokot, Sebastian Deorowicz, Rob Patro","doi":"10.1186/s13059-022-02743-6","DOIUrl":null,"url":null,"abstract":"<p><p>The de Bruijn graph is a key data structure in modern computational genomics, and construction of its compacted variant resides upstream of many genomic analyses. As the quantity of genomic data grows rapidly, this often forms a computational bottleneck. We present Cuttlefish 2, significantly advancing the state-of-the-art for this problem. On a commodity server, it reduces the graph construction time for 661K bacterial genomes, of size 2.58Tbp, from 4.5 days to 17-23 h; and it constructs the graph for 1.52Tbp white spruce reads in approximately 10 h, while the closest competitor requires 54-58 h, using considerably more memory.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"23 1","pages":"190"},"PeriodicalIF":12.3000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454175/pdf/","citationCount":"3","resultStr":"{\"title\":\"Scalable, ultra-fast, and low-memory construction of compacted de Bruijn graphs with Cuttlefish 2.\",\"authors\":\"Jamshed Khan, Marek Kokot, Sebastian Deorowicz, Rob Patro\",\"doi\":\"10.1186/s13059-022-02743-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The de Bruijn graph is a key data structure in modern computational genomics, and construction of its compacted variant resides upstream of many genomic analyses. As the quantity of genomic data grows rapidly, this often forms a computational bottleneck. We present Cuttlefish 2, significantly advancing the state-of-the-art for this problem. On a commodity server, it reduces the graph construction time for 661K bacterial genomes, of size 2.58Tbp, from 4.5 days to 17-23 h; and it constructs the graph for 1.52Tbp white spruce reads in approximately 10 h, while the closest competitor requires 54-58 h, using considerably more memory.</p>\",\"PeriodicalId\":48922,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"23 1\",\"pages\":\"190\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454175/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-022-02743-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-022-02743-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Scalable, ultra-fast, and low-memory construction of compacted de Bruijn graphs with Cuttlefish 2.
The de Bruijn graph is a key data structure in modern computational genomics, and construction of its compacted variant resides upstream of many genomic analyses. As the quantity of genomic data grows rapidly, this often forms a computational bottleneck. We present Cuttlefish 2, significantly advancing the state-of-the-art for this problem. On a commodity server, it reduces the graph construction time for 661K bacterial genomes, of size 2.58Tbp, from 4.5 days to 17-23 h; and it constructs the graph for 1.52Tbp white spruce reads in approximately 10 h, while the closest competitor requires 54-58 h, using considerably more memory.
期刊介绍:
Genome Biology is a leading research journal that focuses on the study of biology and biomedicine from a genomic and post-genomic standpoint. The journal consistently publishes outstanding research across various areas within these fields.
With an impressive impact factor of 12.3 (2022), Genome Biology has earned its place as the 3rd highest-ranked research journal in the Genetics and Heredity category, according to Thomson Reuters. Additionally, it is ranked 2nd among research journals in the Biotechnology and Applied Microbiology category. It is important to note that Genome Biology is the top-ranking open access journal in this category.
In summary, Genome Biology sets a high standard for scientific publications in the field, showcasing cutting-edge research and earning recognition among its peers.