基于人工神经网络估计器的超声同差k成像放射组学评价肝纤维化。

IF 2.5 4区 医学 Q1 ACOUSTICS
Ultrasonic Imaging Pub Date : 2022-11-01 Epub Date: 2022-08-26 DOI:10.1177/01617346221120070
Zhuhuang Zhou, Zijing Zhang, Anna Gao, Dar-In Tai, Shuicai Wu, Po-Hsiang Tsui
{"title":"基于人工神经网络估计器的超声同差k成像放射组学评价肝纤维化。","authors":"Zhuhuang Zhou,&nbsp;Zijing Zhang,&nbsp;Anna Gao,&nbsp;Dar-In Tai,&nbsp;Shuicai Wu,&nbsp;Po-Hsiang Tsui","doi":"10.1177/01617346221120070","DOIUrl":null,"url":null,"abstract":"<p><p>The homodyned-K distribution is an important ultrasound backscatter envelope statistics model of physical meaning, and the parametric imaging of the model parameters has been explored for quantitative ultrasound tissue characterization. In this paper, we proposed a new method for liver fibrosis characterization by using radiomics of ultrasound backscatter homodyned-K imaging based on an improved artificial neural network (iANN) estimator. The iANN estimator was used to estimate the ultrasound homodyned-K distribution parameters <i>k</i> and <i>α</i> from the backscattered radiofrequency (RF) signals of clinical liver fibrosis (<i>n</i> = 237), collected with a 3-MHz convex array transducer. The RF data were divided into two groups: Group I corresponded to liver fibrosis with no hepatic steatosis (<i>n</i> = 94), and Group II corresponded to liver fibrosis with mild to severe hepatic steatosis (<i>n</i> = 143). The estimated homodyned-K parameter values were then used to construct <i>k</i> and <i>α</i> parametric images using the sliding window technique. Radiomics features of <i>k</i> and <i>α</i> parametric images were extracted, and feature selection was conducted. Logistic regression classification models based on the selected radiomics features were built for staging liver fibrosis. Experimental results showed that the proposed method is overall superior to the radiomics method of uncompressed envelope images when assessing liver fibrosis. Regardless of hepatic steatosis, the proposed method achieved the best performance in staging liver fibrosis ≥<i>F1</i>, ≥<i>F4</i>, and the area under the receiver operating characteristic curve was 0.88, 0.85 (Group I), and 0.85, 0.86 (Group II), respectively. Radiomics has improved the ability of ultrasound backscatter statistical parametric imaging to assess liver fibrosis, and is expected to become a new quantitative ultrasound method for liver fibrosis characterization.</p>","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Liver Fibrosis Assessment Using Radiomics of Ultrasound Homodyned-K imaging Based on the Artificial Neural Network Estimator.\",\"authors\":\"Zhuhuang Zhou,&nbsp;Zijing Zhang,&nbsp;Anna Gao,&nbsp;Dar-In Tai,&nbsp;Shuicai Wu,&nbsp;Po-Hsiang Tsui\",\"doi\":\"10.1177/01617346221120070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The homodyned-K distribution is an important ultrasound backscatter envelope statistics model of physical meaning, and the parametric imaging of the model parameters has been explored for quantitative ultrasound tissue characterization. In this paper, we proposed a new method for liver fibrosis characterization by using radiomics of ultrasound backscatter homodyned-K imaging based on an improved artificial neural network (iANN) estimator. The iANN estimator was used to estimate the ultrasound homodyned-K distribution parameters <i>k</i> and <i>α</i> from the backscattered radiofrequency (RF) signals of clinical liver fibrosis (<i>n</i> = 237), collected with a 3-MHz convex array transducer. The RF data were divided into two groups: Group I corresponded to liver fibrosis with no hepatic steatosis (<i>n</i> = 94), and Group II corresponded to liver fibrosis with mild to severe hepatic steatosis (<i>n</i> = 143). The estimated homodyned-K parameter values were then used to construct <i>k</i> and <i>α</i> parametric images using the sliding window technique. Radiomics features of <i>k</i> and <i>α</i> parametric images were extracted, and feature selection was conducted. Logistic regression classification models based on the selected radiomics features were built for staging liver fibrosis. Experimental results showed that the proposed method is overall superior to the radiomics method of uncompressed envelope images when assessing liver fibrosis. Regardless of hepatic steatosis, the proposed method achieved the best performance in staging liver fibrosis ≥<i>F1</i>, ≥<i>F4</i>, and the area under the receiver operating characteristic curve was 0.88, 0.85 (Group I), and 0.85, 0.86 (Group II), respectively. Radiomics has improved the ability of ultrasound backscatter statistical parametric imaging to assess liver fibrosis, and is expected to become a new quantitative ultrasound method for liver fibrosis characterization.</p>\",\"PeriodicalId\":49401,\"journal\":{\"name\":\"Ultrasonic Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonic Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/01617346221120070\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonic Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01617346221120070","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 6

摘要

纯动k分布是一种重要的具有物理意义的超声后向散射包络统计模型,该模型参数的参数化成像已被用于定量超声组织表征。在本文中,我们提出了一种基于改进的人工神经网络(iANN)估计器,利用超声后向散射纯动力k成像放射组学来表征肝纤维化的新方法。利用iANN估计器从3mhz凸阵换能器采集的临床肝纤维化(n = 237)的后向散射射频(RF)信号中估计超声同动- k分布参数k和α。RF数据分为两组:I组对应肝纤维化,无肝脂肪变性(n = 94), II组对应肝纤维化,轻度至重度肝脂肪变性(n = 143)。然后使用滑动窗口技术将估计的同动k参数值用于构造k和α参数图像。提取k和α参数图像的放射组学特征,进行特征选择。基于选择的放射组学特征建立了肝纤维化分期的逻辑回归分类模型。实验结果表明,该方法在评估肝纤维化时总体上优于未压缩包膜图像的放射组学方法。无论是否存在肝脂肪变性,该方法在肝纤维化≥F1、≥F4分期中表现最佳,受试者工作特征曲线下面积分别为0.88、0.85(第一组)和0.85、0.86(第二组)。放射组学提高了超声后向散射统计参数成像评估肝纤维化的能力,有望成为肝纤维化表征的一种新的定量超声方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Liver Fibrosis Assessment Using Radiomics of Ultrasound Homodyned-K imaging Based on the Artificial Neural Network Estimator.

The homodyned-K distribution is an important ultrasound backscatter envelope statistics model of physical meaning, and the parametric imaging of the model parameters has been explored for quantitative ultrasound tissue characterization. In this paper, we proposed a new method for liver fibrosis characterization by using radiomics of ultrasound backscatter homodyned-K imaging based on an improved artificial neural network (iANN) estimator. The iANN estimator was used to estimate the ultrasound homodyned-K distribution parameters k and α from the backscattered radiofrequency (RF) signals of clinical liver fibrosis (n = 237), collected with a 3-MHz convex array transducer. The RF data were divided into two groups: Group I corresponded to liver fibrosis with no hepatic steatosis (n = 94), and Group II corresponded to liver fibrosis with mild to severe hepatic steatosis (n = 143). The estimated homodyned-K parameter values were then used to construct k and α parametric images using the sliding window technique. Radiomics features of k and α parametric images were extracted, and feature selection was conducted. Logistic regression classification models based on the selected radiomics features were built for staging liver fibrosis. Experimental results showed that the proposed method is overall superior to the radiomics method of uncompressed envelope images when assessing liver fibrosis. Regardless of hepatic steatosis, the proposed method achieved the best performance in staging liver fibrosis ≥F1, ≥F4, and the area under the receiver operating characteristic curve was 0.88, 0.85 (Group I), and 0.85, 0.86 (Group II), respectively. Radiomics has improved the ability of ultrasound backscatter statistical parametric imaging to assess liver fibrosis, and is expected to become a new quantitative ultrasound method for liver fibrosis characterization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonic Imaging
Ultrasonic Imaging 医学-工程:生物医学
CiteScore
5.10
自引率
8.70%
发文量
15
审稿时长
>12 weeks
期刊介绍: Ultrasonic Imaging provides rapid publication for original and exceptional papers concerned with the development and application of ultrasonic-imaging technology. Ultrasonic Imaging publishes articles in the following areas: theoretical and experimental aspects of advanced methods and instrumentation for imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信