一种新疗法在多组临床试验中的有效自适应随机化和停止规则。

Tze Leung Lai, Olivia Yueh-Wen Liao
{"title":"一种新疗法在多组临床试验中的有效自适应随机化和停止规则。","authors":"Tze Leung Lai,&nbsp;Olivia Yueh-Wen Liao","doi":"10.1080/07474946.2012.719433","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated by applications to confirmatory clinical trials for testing a new treatment against a placebo or active control when the new treatment has <i>k</i> possible treatment strategies (arms)-for example, <i>k</i> possible doses for a new drug-we develop an asymptotic theory for efficient outcome-adaptive randomization schemes and optimal stopping rules. Our approach consists of developing asymptotic lower bounds for the expected sample sizes from the <i>k</i> treatment arms and the control arm and using generalized sequential likelihood ratio procedures to achieve these bounds. Implementation details of our design and analysis and comparative simulation studies are also provided.</p>","PeriodicalId":516303,"journal":{"name":"Sequential Analysis","volume":"31 4","pages":"441-457"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07474946.2012.719433","citationCount":"14","resultStr":"{\"title\":\"Efficient Adaptive Randomization and Stopping Rules in Multi-arm Clinical Trials for Testing a New Treatment.\",\"authors\":\"Tze Leung Lai,&nbsp;Olivia Yueh-Wen Liao\",\"doi\":\"10.1080/07474946.2012.719433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motivated by applications to confirmatory clinical trials for testing a new treatment against a placebo or active control when the new treatment has <i>k</i> possible treatment strategies (arms)-for example, <i>k</i> possible doses for a new drug-we develop an asymptotic theory for efficient outcome-adaptive randomization schemes and optimal stopping rules. Our approach consists of developing asymptotic lower bounds for the expected sample sizes from the <i>k</i> treatment arms and the control arm and using generalized sequential likelihood ratio procedures to achieve these bounds. Implementation details of our design and analysis and comparative simulation studies are also provided.</p>\",\"PeriodicalId\":516303,\"journal\":{\"name\":\"Sequential Analysis\",\"volume\":\"31 4\",\"pages\":\"441-457\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07474946.2012.719433\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sequential Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07474946.2012.719433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sequential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07474946.2012.719433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

当一种新疗法有k种可能的治疗策略(组)——例如,一种新药有k种可能的剂量——时,应用于验证性临床试验来测试一种新疗法与安慰剂或主动对照的疗效,我们提出了一种有效结果的渐近理论——适应性随机化方案和最佳停药规则。我们的方法包括为k个治疗组和对照组的预期样本量开发渐近下界,并使用广义序列似然比程序来实现这些下界。文中还提供了我们的设计和分析的实现细节以及对比仿真研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Adaptive Randomization and Stopping Rules in Multi-arm Clinical Trials for Testing a New Treatment.

Motivated by applications to confirmatory clinical trials for testing a new treatment against a placebo or active control when the new treatment has k possible treatment strategies (arms)-for example, k possible doses for a new drug-we develop an asymptotic theory for efficient outcome-adaptive randomization schemes and optimal stopping rules. Our approach consists of developing asymptotic lower bounds for the expected sample sizes from the k treatment arms and the control arm and using generalized sequential likelihood ratio procedures to achieve these bounds. Implementation details of our design and analysis and comparative simulation studies are also provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信