人类连接体数据的模式可视化。

Yishi Guo, Yang Wang, Shiaofen Fang, Hongyang Chao, Andrew J Saykin, Li Shen
{"title":"人类连接体数据的模式可视化。","authors":"Yishi Guo,&nbsp;Yang Wang,&nbsp;Shiaofen Fang,&nbsp;Hongyang Chao,&nbsp;Andrew J Saykin,&nbsp;Li Shen","doi":"10.2312/PE/EuroVisShort/EuroVisShort2012/078-083","DOIUrl":null,"url":null,"abstract":"<p><p>The human brain is a complex network with countless connected neurons, and can be described as a \"connectome\". Existing studies on analyzing human connectome data are primarily focused on characterizing the brain networks with a small number of easily computable measures that may be inadequate for revealing complex relationship between brain function and its structural substrate. To facilitate large-scale connectomic analysis, in this paper, we propose a powerful and flexible volume rendering scheme to effectively visualize and interactively explore thousands of network measures in the context of brain anatomy, and to aid pattern discovery. We demonstrate the effectiveness of the proposed scheme by applying it to a real connectome data set.</p>","PeriodicalId":72959,"journal":{"name":"Eurographics/IEEE VGTC Symposium on Visualization : EUROVIS : [proceedings]. Eurographics/IEEE VGTC Symposium on Visualization","volume":"2012 ","pages":"78-83"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469287/pdf/nihms695796.pdf","citationCount":"2","resultStr":"{\"title\":\"Pattern Visualization of Human Connectome Data.\",\"authors\":\"Yishi Guo,&nbsp;Yang Wang,&nbsp;Shiaofen Fang,&nbsp;Hongyang Chao,&nbsp;Andrew J Saykin,&nbsp;Li Shen\",\"doi\":\"10.2312/PE/EuroVisShort/EuroVisShort2012/078-083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human brain is a complex network with countless connected neurons, and can be described as a \\\"connectome\\\". Existing studies on analyzing human connectome data are primarily focused on characterizing the brain networks with a small number of easily computable measures that may be inadequate for revealing complex relationship between brain function and its structural substrate. To facilitate large-scale connectomic analysis, in this paper, we propose a powerful and flexible volume rendering scheme to effectively visualize and interactively explore thousands of network measures in the context of brain anatomy, and to aid pattern discovery. We demonstrate the effectiveness of the proposed scheme by applying it to a real connectome data set.</p>\",\"PeriodicalId\":72959,\"journal\":{\"name\":\"Eurographics/IEEE VGTC Symposium on Visualization : EUROVIS : [proceedings]. Eurographics/IEEE VGTC Symposium on Visualization\",\"volume\":\"2012 \",\"pages\":\"78-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469287/pdf/nihms695796.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics/IEEE VGTC Symposium on Visualization : EUROVIS : [proceedings]. Eurographics/IEEE VGTC Symposium on Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/PE/EuroVisShort/EuroVisShort2012/078-083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics/IEEE VGTC Symposium on Visualization : EUROVIS : [proceedings]. Eurographics/IEEE VGTC Symposium on Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/PE/EuroVisShort/EuroVisShort2012/078-083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人类的大脑是一个由无数相连的神经元组成的复杂网络,可以被描述为一个“连接组”。现有的分析人类连接组数据的研究主要集中在用少量易于计算的测量来表征大脑网络,这些测量可能不足以揭示大脑功能与其结构基质之间的复杂关系。为了便于大规模的连接组分析,本文提出了一种强大而灵活的体绘制方案,以有效地可视化和交互式地探索大脑解剖学背景下的数千个网络测量,并帮助发现模式。我们通过将其应用于真实的连接体数据集来证明所提出方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern Visualization of Human Connectome Data.

The human brain is a complex network with countless connected neurons, and can be described as a "connectome". Existing studies on analyzing human connectome data are primarily focused on characterizing the brain networks with a small number of easily computable measures that may be inadequate for revealing complex relationship between brain function and its structural substrate. To facilitate large-scale connectomic analysis, in this paper, we propose a powerful and flexible volume rendering scheme to effectively visualize and interactively explore thousands of network measures in the context of brain anatomy, and to aid pattern discovery. We demonstrate the effectiveness of the proposed scheme by applying it to a real connectome data set.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信