John B. Vincent, Bridget Henning, Simon Saulei, Gibson Sosanika, George D. Weiblen
{"title":"巴布亚新几内亚低地的森林碳:地方变化和小树的重要性","authors":"John B. Vincent, Bridget Henning, Simon Saulei, Gibson Sosanika, George D. Weiblen","doi":"10.1111/aec.12187","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Efforts to incentivize the reduction of carbon emissions from deforestation and forest degradation require accurate carbon accounting. The extensive tropical forest of Papua New Guinea (PNG) is a target for such efforts and yet local carbon estimates are few. Previous estimates, based on models of neotropical vegetation applied to PNG forest plots, did not consider such factors as the unique species composition of New Guinea vegetation, local variation in forest biomass, or the contribution of small trees. We analysed all trees >1 cm in diameter at breast height (DBH) in Melanesia's largest forest plot (Wanang) to assess local spatial variation and the role of small trees in carbon storage. Above-ground living biomass (AGLB) of trees averaged 210.72 Mg ha<sup>−1</sup> at Wanang. Carbon storage at Wanang was somewhat lower than in other lowland tropical forests, whereas local variation among 1-ha subplots and the contribution of small trees to total AGLB were substantially higher. We speculate that these differences may be attributed to the dynamics of Wanang forest where erosion of a recently uplifted and unstable terrain appears to be a major source of natural disturbance. These findings emphasize the need for locally calibrated forest carbon estimates if accurate landscape level valuation and monetization of carbon is to be achieved. Such estimates aim to situate PNG forests in the global carbon context and provide baseline information needed to improve the accuracy of PNG carbon monitoring schemes.</p>\n </div>","PeriodicalId":8663,"journal":{"name":"Austral Ecology","volume":"40 2","pages":"151-159"},"PeriodicalIF":1.6000,"publicationDate":"2014-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/aec.12187","citationCount":"40","resultStr":"{\"title\":\"Forest carbon in lowland Papua New Guinea: Local variation and the importance of small trees\",\"authors\":\"John B. Vincent, Bridget Henning, Simon Saulei, Gibson Sosanika, George D. Weiblen\",\"doi\":\"10.1111/aec.12187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Efforts to incentivize the reduction of carbon emissions from deforestation and forest degradation require accurate carbon accounting. The extensive tropical forest of Papua New Guinea (PNG) is a target for such efforts and yet local carbon estimates are few. Previous estimates, based on models of neotropical vegetation applied to PNG forest plots, did not consider such factors as the unique species composition of New Guinea vegetation, local variation in forest biomass, or the contribution of small trees. We analysed all trees >1 cm in diameter at breast height (DBH) in Melanesia's largest forest plot (Wanang) to assess local spatial variation and the role of small trees in carbon storage. Above-ground living biomass (AGLB) of trees averaged 210.72 Mg ha<sup>−1</sup> at Wanang. Carbon storage at Wanang was somewhat lower than in other lowland tropical forests, whereas local variation among 1-ha subplots and the contribution of small trees to total AGLB were substantially higher. We speculate that these differences may be attributed to the dynamics of Wanang forest where erosion of a recently uplifted and unstable terrain appears to be a major source of natural disturbance. These findings emphasize the need for locally calibrated forest carbon estimates if accurate landscape level valuation and monetization of carbon is to be achieved. Such estimates aim to situate PNG forests in the global carbon context and provide baseline information needed to improve the accuracy of PNG carbon monitoring schemes.</p>\\n </div>\",\"PeriodicalId\":8663,\"journal\":{\"name\":\"Austral Ecology\",\"volume\":\"40 2\",\"pages\":\"151-159\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2014-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/aec.12187\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austral Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/aec.12187\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austral Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/aec.12187","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Forest carbon in lowland Papua New Guinea: Local variation and the importance of small trees
Efforts to incentivize the reduction of carbon emissions from deforestation and forest degradation require accurate carbon accounting. The extensive tropical forest of Papua New Guinea (PNG) is a target for such efforts and yet local carbon estimates are few. Previous estimates, based on models of neotropical vegetation applied to PNG forest plots, did not consider such factors as the unique species composition of New Guinea vegetation, local variation in forest biomass, or the contribution of small trees. We analysed all trees >1 cm in diameter at breast height (DBH) in Melanesia's largest forest plot (Wanang) to assess local spatial variation and the role of small trees in carbon storage. Above-ground living biomass (AGLB) of trees averaged 210.72 Mg ha−1 at Wanang. Carbon storage at Wanang was somewhat lower than in other lowland tropical forests, whereas local variation among 1-ha subplots and the contribution of small trees to total AGLB were substantially higher. We speculate that these differences may be attributed to the dynamics of Wanang forest where erosion of a recently uplifted and unstable terrain appears to be a major source of natural disturbance. These findings emphasize the need for locally calibrated forest carbon estimates if accurate landscape level valuation and monetization of carbon is to be achieved. Such estimates aim to situate PNG forests in the global carbon context and provide baseline information needed to improve the accuracy of PNG carbon monitoring schemes.
期刊介绍:
Austral Ecology is the premier journal for basic and applied ecology in the Southern Hemisphere. As the official Journal of The Ecological Society of Australia (ESA), Austral Ecology addresses the commonality between ecosystems in Australia and many parts of southern Africa, South America, New Zealand and Oceania. For example many species in the unique biotas of these regions share common Gondwana ancestors. ESA''s aim is to publish innovative research to encourage the sharing of information and experiences that enrich the understanding of the ecology of the Southern Hemisphere.
Austral Ecology involves an editorial board with representatives from Australia, South Africa, New Zealand, Brazil and Argentina. These representatives provide expert opinions, access to qualified reviewers and act as a focus for attracting a wide range of contributions from countries across the region.
Austral Ecology publishes original papers describing experimental, observational or theoretical studies on terrestrial, marine or freshwater systems, which are considered without taxonomic bias. Special thematic issues are published regularly, including symposia on the ecology of estuaries and soft sediment habitats, freshwater systems and coral reef fish.