{"title":"通过crispr级联:基因组编辑会促进细胞治疗吗?","authors":"Uri Ben-David","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Recent years have seen great advancements in genome editing technologies, allowing for efficient and specific targeting of DNA sequences into the genome. In parallel, advancements in stem cell research, and especially the ability to induce pluripotency in somatic cells, have brought stem cell-derived therapies closer to the clinic. In this commentary, I envision how groundbreaking genome editing technologies will influence stem cell biology research, paving the way to regenerative medicine with genetically engineered cells. </p>","PeriodicalId":90271,"journal":{"name":"Molecular and cellular therapies","volume":"1 ","pages":"3"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448953/pdf/","citationCount":"0","resultStr":"{\"title\":\"Flowing through the CRISPR-CAScade: Will genome editing boost cell therapies?\",\"authors\":\"Uri Ben-David\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent years have seen great advancements in genome editing technologies, allowing for efficient and specific targeting of DNA sequences into the genome. In parallel, advancements in stem cell research, and especially the ability to induce pluripotency in somatic cells, have brought stem cell-derived therapies closer to the clinic. In this commentary, I envision how groundbreaking genome editing technologies will influence stem cell biology research, paving the way to regenerative medicine with genetically engineered cells. </p>\",\"PeriodicalId\":90271,\"journal\":{\"name\":\"Molecular and cellular therapies\",\"volume\":\"1 \",\"pages\":\"3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448953/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and cellular therapies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and cellular therapies","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Flowing through the CRISPR-CAScade: Will genome editing boost cell therapies?
Recent years have seen great advancements in genome editing technologies, allowing for efficient and specific targeting of DNA sequences into the genome. In parallel, advancements in stem cell research, and especially the ability to induce pluripotency in somatic cells, have brought stem cell-derived therapies closer to the clinic. In this commentary, I envision how groundbreaking genome editing technologies will influence stem cell biology research, paving the way to regenerative medicine with genetically engineered cells.