基于形变不变稀疏编码的脑功能模式空间变异性建模。

George H Chen, Evelina G Fedorenko, Nancy G Kanwisher, Polina Golland
{"title":"基于形变不变稀疏编码的脑功能模式空间变异性建模。","authors":"George H Chen,&nbsp;Evelina G Fedorenko,&nbsp;Nancy G Kanwisher,&nbsp;Polina Golland","doi":"10.1007/978-3-642-34713-9_9","DOIUrl":null,"url":null,"abstract":"<p><p>For a given cognitive task such as language processing, the location of corresponding functional regions in the brain may vary across subjects relative to anatomy. We present a probabilistic generative model that accounts for such variability as observed in fMRI data. We relate our approach to sparse coding that estimates a basis consisting of functional regions in the brain. Individual fMRI data is represented as a weighted sum of these functional regions that undergo deformations. We demonstrate the proposed method on a language fMRI study. Our method identified activation regions that agree with known literature on language processing and established correspondences among activation regions across subjects, producing more robust group-level effects than anatomical alignment alone.</p>","PeriodicalId":90917,"journal":{"name":"Machine learning and interpretation in neuroimaging : international workshop, MLINI 2011, held at NIPS 2011, Sierra Nevada, Spain, December 16-17, 2011 : revised selected and invited contributions. MLINI (Workshop) (2011 : Sierra Nevada...","volume":"7263 ","pages":"68-75"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-642-34713-9_9","citationCount":"4","resultStr":"{\"title\":\"Deformation-Invariant Sparse Coding for Modeling Spatial Variability of Functional Patterns in the Brain.\",\"authors\":\"George H Chen,&nbsp;Evelina G Fedorenko,&nbsp;Nancy G Kanwisher,&nbsp;Polina Golland\",\"doi\":\"10.1007/978-3-642-34713-9_9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For a given cognitive task such as language processing, the location of corresponding functional regions in the brain may vary across subjects relative to anatomy. We present a probabilistic generative model that accounts for such variability as observed in fMRI data. We relate our approach to sparse coding that estimates a basis consisting of functional regions in the brain. Individual fMRI data is represented as a weighted sum of these functional regions that undergo deformations. We demonstrate the proposed method on a language fMRI study. Our method identified activation regions that agree with known literature on language processing and established correspondences among activation regions across subjects, producing more robust group-level effects than anatomical alignment alone.</p>\",\"PeriodicalId\":90917,\"journal\":{\"name\":\"Machine learning and interpretation in neuroimaging : international workshop, MLINI 2011, held at NIPS 2011, Sierra Nevada, Spain, December 16-17, 2011 : revised selected and invited contributions. MLINI (Workshop) (2011 : Sierra Nevada...\",\"volume\":\"7263 \",\"pages\":\"68-75\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-642-34713-9_9\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning and interpretation in neuroimaging : international workshop, MLINI 2011, held at NIPS 2011, Sierra Nevada, Spain, December 16-17, 2011 : revised selected and invited contributions. MLINI (Workshop) (2011 : Sierra Nevada...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-642-34713-9_9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and interpretation in neuroimaging : international workshop, MLINI 2011, held at NIPS 2011, Sierra Nevada, Spain, December 16-17, 2011 : revised selected and invited contributions. MLINI (Workshop) (2011 : Sierra Nevada...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-642-34713-9_9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对于给定的认知任务,如语言处理,相对于解剖学,大脑中相应功能区域的位置可能因学科而异。我们提出了一个概率生成模型,该模型解释了在功能磁共振成像数据中观察到的这种可变性。我们将我们的方法与稀疏编码联系起来,该方法估计了由大脑功能区域组成的基础。单个fMRI数据表示为这些功能区域的加权和,这些功能区域经历变形。我们在语言功能磁共振成像研究中证明了所提出的方法。我们的方法确定了与已知语言处理文献一致的激活区域,并在受试者之间建立了激活区域之间的对应关系,产生了比单独的解剖一致性更强大的群体水平效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformation-Invariant Sparse Coding for Modeling Spatial Variability of Functional Patterns in the Brain.

For a given cognitive task such as language processing, the location of corresponding functional regions in the brain may vary across subjects relative to anatomy. We present a probabilistic generative model that accounts for such variability as observed in fMRI data. We relate our approach to sparse coding that estimates a basis consisting of functional regions in the brain. Individual fMRI data is represented as a weighted sum of these functional regions that undergo deformations. We demonstrate the proposed method on a language fMRI study. Our method identified activation regions that agree with known literature on language processing and established correspondences among activation regions across subjects, producing more robust group-level effects than anatomical alignment alone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信