Archana Singh, Bharat Bhushan, Kishor Gaikwad, O P Yadav, Suresh Kumar, R D Rai
{"title":"不同盐胁迫下不同面包小麦基因型的诱导防御反应。","authors":"Archana Singh, Bharat Bhushan, Kishor Gaikwad, O P Yadav, Suresh Kumar, R D Rai","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Plants, being sessile in nature, have developed mechanisms to cope with high salt concentrations in the soil. In this study, the effects of NaCl (50-200 mM) on expression of high-affinity potassium transporters (HKTs), antioxidant enzymes and their isozyme profiles were investigated in two contrasting bread wheat (Triticum aestivum L.) genotypes viz., HD2329 (salt-sensitive) and Kharchia65 (salt-tolerant). Kharchia65 can successfully grow in salt affected soils, while HD2329 cannot tolerate salt stress. Differential expression studies of two HKT genes (TaHKT2;1.1 and TaHKT2;3.1) revealed their up-regulated expression (-1.5-fold) in the salt-sensitive HD2329 and down-regulated (-5-fold) inducible expression in the salt-tolerant genotype (Kharchia65). Specific activity of antioxidant enzymes, viz. superoxide dismutase (SOD), peroxidase (POX), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) was found to be higher in the salt-tolerant genotype. Isozyme profile of two (POX and GR) antioxidant enzymes showed polymorphism between salt-tolerant and salt-sensitive genotypes. A new gene TaHKT2;3.1 was also identified and its expression profile and role in salt stress tolerance in wheat was also studied. Partial sequences of the TaHKT2;1.1 and TaHKT2;3.1 genes from bread wheat were submitted to the EMBL GenBank database. Our findings indicated that defence responses to salt stress were induced differentially in contrasting bread wheat genotypes which provide evidences for functional correlation between salt stress tolerance and differential biochemical and molecular expression patterns in bread wheat.</p>","PeriodicalId":13281,"journal":{"name":"Indian journal of biochemistry & biophysics","volume":"52 1","pages":"75-85"},"PeriodicalIF":1.5000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Induced defence responses of contrasting bread wheat genotypes under differential salt stress imposition.\",\"authors\":\"Archana Singh, Bharat Bhushan, Kishor Gaikwad, O P Yadav, Suresh Kumar, R D Rai\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants, being sessile in nature, have developed mechanisms to cope with high salt concentrations in the soil. In this study, the effects of NaCl (50-200 mM) on expression of high-affinity potassium transporters (HKTs), antioxidant enzymes and their isozyme profiles were investigated in two contrasting bread wheat (Triticum aestivum L.) genotypes viz., HD2329 (salt-sensitive) and Kharchia65 (salt-tolerant). Kharchia65 can successfully grow in salt affected soils, while HD2329 cannot tolerate salt stress. Differential expression studies of two HKT genes (TaHKT2;1.1 and TaHKT2;3.1) revealed their up-regulated expression (-1.5-fold) in the salt-sensitive HD2329 and down-regulated (-5-fold) inducible expression in the salt-tolerant genotype (Kharchia65). Specific activity of antioxidant enzymes, viz. superoxide dismutase (SOD), peroxidase (POX), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) was found to be higher in the salt-tolerant genotype. Isozyme profile of two (POX and GR) antioxidant enzymes showed polymorphism between salt-tolerant and salt-sensitive genotypes. A new gene TaHKT2;3.1 was also identified and its expression profile and role in salt stress tolerance in wheat was also studied. Partial sequences of the TaHKT2;1.1 and TaHKT2;3.1 genes from bread wheat were submitted to the EMBL GenBank database. Our findings indicated that defence responses to salt stress were induced differentially in contrasting bread wheat genotypes which provide evidences for functional correlation between salt stress tolerance and differential biochemical and molecular expression patterns in bread wheat.</p>\",\"PeriodicalId\":13281,\"journal\":{\"name\":\"Indian journal of biochemistry & biophysics\",\"volume\":\"52 1\",\"pages\":\"75-85\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2015-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian journal of biochemistry & biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of biochemistry & biophysics","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Induced defence responses of contrasting bread wheat genotypes under differential salt stress imposition.
Plants, being sessile in nature, have developed mechanisms to cope with high salt concentrations in the soil. In this study, the effects of NaCl (50-200 mM) on expression of high-affinity potassium transporters (HKTs), antioxidant enzymes and their isozyme profiles were investigated in two contrasting bread wheat (Triticum aestivum L.) genotypes viz., HD2329 (salt-sensitive) and Kharchia65 (salt-tolerant). Kharchia65 can successfully grow in salt affected soils, while HD2329 cannot tolerate salt stress. Differential expression studies of two HKT genes (TaHKT2;1.1 and TaHKT2;3.1) revealed their up-regulated expression (-1.5-fold) in the salt-sensitive HD2329 and down-regulated (-5-fold) inducible expression in the salt-tolerant genotype (Kharchia65). Specific activity of antioxidant enzymes, viz. superoxide dismutase (SOD), peroxidase (POX), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) was found to be higher in the salt-tolerant genotype. Isozyme profile of two (POX and GR) antioxidant enzymes showed polymorphism between salt-tolerant and salt-sensitive genotypes. A new gene TaHKT2;3.1 was also identified and its expression profile and role in salt stress tolerance in wheat was also studied. Partial sequences of the TaHKT2;1.1 and TaHKT2;3.1 genes from bread wheat were submitted to the EMBL GenBank database. Our findings indicated that defence responses to salt stress were induced differentially in contrasting bread wheat genotypes which provide evidences for functional correlation between salt stress tolerance and differential biochemical and molecular expression patterns in bread wheat.
期刊介绍:
Started in 1964, this journal publishes original research articles in the following areas: structure-function relationships of biomolecules; biomolecular recognition, protein-protein and protein-DNA interactions; gene-cloning, genetic engineering, genome analysis, gene targeting, gene expression, vectors, gene therapy; drug targeting, drug design; molecular basis of genetic diseases; conformational studies, computer simulation, novel DNA structures and their biological implications, protein folding; enzymes structure, catalytic mechanisms, regulation; membrane biochemistry, transport, ion channels, signal transduction, cell-cell communication, glycobiology; receptors, antigen-antibody binding, neurochemistry, ageing, apoptosis, cell cycle control; hormones, growth factors; oncogenes, host-virus interactions, viral assembly and structure; intermediary metabolism, molecular basis of disease processes, vitamins, coenzymes, carrier proteins, toxicology; plant and microbial biochemistry; surface forces, micelles and microemulsions, colloids, electrical phenomena, etc. in biological systems. Solicited peer reviewed articles on contemporary Themes and Methods in Biochemistry and Biophysics form an important feature of IJBB.
Review articles on a current topic in the above fields are also considered. They must dwell more on research work done during the last couple of years in the field and authors should integrate their own work with that of others with acumen and authenticity, mere compilation of references by a third party is discouraged. While IJBB strongly promotes innovative novel research works for publication as full length papers, it also considers research data emanating from limited objectives, and extension of ongoing experimental works as ‘Notes’. IJBB follows “Double Blind Review process” where author names, affiliations and other correspondence details are removed to ensure fare evaluation. At the same time, reviewer names are not disclosed to authors.