{"title":"DPPH自由基清除活性及H2O2、丙二醛和脯氨酸含量对鹰嘴豆幼苗耐盐性的影响","authors":"Narinder Kaur, Arvind Kumar, Kamaljit Kaur, Anil K Gupta, Inderjit Singh","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The involvement of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and contents of H2O2, malondialdehyde (MDA) and proline was investigated in determining salinity tolerance among seedlings of thirty chickpea (Cicer arietinum L.) genotypes having different pedigrees. Chickpea genotypes, including cultivars and advanced lines were grown for 7 days under control and salt stress (50 mM NaCl) conditions. The genotypes showed differential response to salt stress in terms of growth, DPPH radical scavenging activity and contents of H2O2, MDA and proline in seedlings. On the basis of seedling growth, the genotypes having better performance under stress conditions had reduced levels of H2O2 and MDA contents, but increased levels of proline and DPPH radical scavenging activity. Stress tolerance index for these parameters was also determined. Agglomerative hierarchal clustering by Pearson correlation coefficient grouped the genotypes into two major clusters--MC I and MC II. MC II and Al-1 sub-cluster of MC-I comprised mainly of genotypes that showed higher stress resistance levels for the respective parameters in comparison to genotypes in other sub-clusters. Thus, it is possible to identify salt-tolerant genotypes on the basis of above parameters without a field trial.</p>","PeriodicalId":13281,"journal":{"name":"Indian journal of biochemistry & biophysics","volume":"51 5","pages":"407-15"},"PeriodicalIF":1.5000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DPPH radical scavenging activity and contents of H2O2, malondialdehyde and proline in determining salinity tolerance in chickpea seedlings.\",\"authors\":\"Narinder Kaur, Arvind Kumar, Kamaljit Kaur, Anil K Gupta, Inderjit Singh\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The involvement of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and contents of H2O2, malondialdehyde (MDA) and proline was investigated in determining salinity tolerance among seedlings of thirty chickpea (Cicer arietinum L.) genotypes having different pedigrees. Chickpea genotypes, including cultivars and advanced lines were grown for 7 days under control and salt stress (50 mM NaCl) conditions. The genotypes showed differential response to salt stress in terms of growth, DPPH radical scavenging activity and contents of H2O2, MDA and proline in seedlings. On the basis of seedling growth, the genotypes having better performance under stress conditions had reduced levels of H2O2 and MDA contents, but increased levels of proline and DPPH radical scavenging activity. Stress tolerance index for these parameters was also determined. Agglomerative hierarchal clustering by Pearson correlation coefficient grouped the genotypes into two major clusters--MC I and MC II. MC II and Al-1 sub-cluster of MC-I comprised mainly of genotypes that showed higher stress resistance levels for the respective parameters in comparison to genotypes in other sub-clusters. Thus, it is possible to identify salt-tolerant genotypes on the basis of above parameters without a field trial.</p>\",\"PeriodicalId\":13281,\"journal\":{\"name\":\"Indian journal of biochemistry & biophysics\",\"volume\":\"51 5\",\"pages\":\"407-15\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian journal of biochemistry & biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of biochemistry & biophysics","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
研究了1,1-二苯基-2-苦酰肼(DPPH)自由基清除能力和H2O2、丙二醛(MDA)和脯氨酸含量对30个不同家系鹰嘴豆(Cicer arietinum L.)幼苗耐盐性的影响。在对照和盐胁迫(50 mM NaCl)条件下,鹰嘴豆基因型(包括品种和高级品系)生长7 d。不同基因型在幼苗生长、DPPH自由基清除能力、H2O2、MDA和脯氨酸含量等方面对盐胁迫表现出不同的响应。从幼苗生长情况来看,胁迫条件下表现较好的基因型H2O2和MDA含量降低,脯氨酸和DPPH自由基清除能力提高。确定了这些参数的应力容限指标。皮尔逊相关系数的聚集分层聚类将基因型分为两大类——MC I和MC II。MC- 1的MC- II和Al-1亚簇主要由对各自参数表现出较高抗逆性的基因型组成。因此,有可能在上述参数的基础上鉴定耐盐基因型,而无需田间试验。
DPPH radical scavenging activity and contents of H2O2, malondialdehyde and proline in determining salinity tolerance in chickpea seedlings.
The involvement of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and contents of H2O2, malondialdehyde (MDA) and proline was investigated in determining salinity tolerance among seedlings of thirty chickpea (Cicer arietinum L.) genotypes having different pedigrees. Chickpea genotypes, including cultivars and advanced lines were grown for 7 days under control and salt stress (50 mM NaCl) conditions. The genotypes showed differential response to salt stress in terms of growth, DPPH radical scavenging activity and contents of H2O2, MDA and proline in seedlings. On the basis of seedling growth, the genotypes having better performance under stress conditions had reduced levels of H2O2 and MDA contents, but increased levels of proline and DPPH radical scavenging activity. Stress tolerance index for these parameters was also determined. Agglomerative hierarchal clustering by Pearson correlation coefficient grouped the genotypes into two major clusters--MC I and MC II. MC II and Al-1 sub-cluster of MC-I comprised mainly of genotypes that showed higher stress resistance levels for the respective parameters in comparison to genotypes in other sub-clusters. Thus, it is possible to identify salt-tolerant genotypes on the basis of above parameters without a field trial.
期刊介绍:
Started in 1964, this journal publishes original research articles in the following areas: structure-function relationships of biomolecules; biomolecular recognition, protein-protein and protein-DNA interactions; gene-cloning, genetic engineering, genome analysis, gene targeting, gene expression, vectors, gene therapy; drug targeting, drug design; molecular basis of genetic diseases; conformational studies, computer simulation, novel DNA structures and their biological implications, protein folding; enzymes structure, catalytic mechanisms, regulation; membrane biochemistry, transport, ion channels, signal transduction, cell-cell communication, glycobiology; receptors, antigen-antibody binding, neurochemistry, ageing, apoptosis, cell cycle control; hormones, growth factors; oncogenes, host-virus interactions, viral assembly and structure; intermediary metabolism, molecular basis of disease processes, vitamins, coenzymes, carrier proteins, toxicology; plant and microbial biochemistry; surface forces, micelles and microemulsions, colloids, electrical phenomena, etc. in biological systems. Solicited peer reviewed articles on contemporary Themes and Methods in Biochemistry and Biophysics form an important feature of IJBB.
Review articles on a current topic in the above fields are also considered. They must dwell more on research work done during the last couple of years in the field and authors should integrate their own work with that of others with acumen and authenticity, mere compilation of references by a third party is discouraged. While IJBB strongly promotes innovative novel research works for publication as full length papers, it also considers research data emanating from limited objectives, and extension of ongoing experimental works as ‘Notes’. IJBB follows “Double Blind Review process” where author names, affiliations and other correspondence details are removed to ensure fare evaluation. At the same time, reviewer names are not disclosed to authors.