家兔食用菠菜中叶绿素相关化合物的器官特异性分布。

IF 1.5 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ching-Yun Hsu, Tsan-Huei Yeh, Meng-Yuan Huang, Shene-Pin Hu, Pi-Yu Chao, Chi-Ming Yang
{"title":"家兔食用菠菜中叶绿素相关化合物的器官特异性分布。","authors":"Ching-Yun Hsu,&nbsp;Tsan-Huei Yeh,&nbsp;Meng-Yuan Huang,&nbsp;Shene-Pin Hu,&nbsp;Pi-Yu Chao,&nbsp;Chi-Ming Yang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The distribution of chlorophyll-related compounds (CRCs) derived from dietary spinach was investigated in different organs the rabbits. The rabbits in the experimental group consumed 100 g of freeze-dried spinach powder after a 24 h fasting period and sacrificed 2, 4, 8, 12 and 24 h later and in the control group sacrificed after the 24 h fasting period. The main CRCs in the liver were found to be chlorophyll (Chl a) and b, chlorophyllide (Chlide) a and b, pheophytin (Phe) a and b and pheophorbide (Pho) a and b, which reached their peak values at 8 h post-feeding. The gallbladder contained mainly Chlide a and a', Pho a and a', Pho b and b', which peaked their values at 2 h post-feeding. Pho a and b were consistently observed in the blood and peaked at 12 h post-feeding. The earlier appearance of Chlide a', Pho a' and Pho b' in the gallbladder compared to the liver indicated that these CRCs were compartmentalized differently and might undergo the same type of vectorialized transport as characterized for the bile salts. Pho levels peaked later in the blood compared to the liver, suggesting that Pho might be released into the peripheral blood circulation from the liver. In conclusion, Chlide and Pho were the principal Chl metabolites in the rabbits. Our data may expand our understanding of the metabolism and biodistribution of CRCs in the human body. A number of biological functions, including anti-oxidation, anti-tumor and anti-aging have recently been attributed to CRCs, it will be interesting to explore, if the binding of Chlide and Pho to other nutrients or trace metal ions in the body mediate their biological functions.</p>","PeriodicalId":13281,"journal":{"name":"Indian journal of biochemistry & biophysics","volume":"51 5","pages":"388-95"},"PeriodicalIF":1.5000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organ-specific distribution of chlorophyll-related compounds from dietary spinach in rabbits.\",\"authors\":\"Ching-Yun Hsu,&nbsp;Tsan-Huei Yeh,&nbsp;Meng-Yuan Huang,&nbsp;Shene-Pin Hu,&nbsp;Pi-Yu Chao,&nbsp;Chi-Ming Yang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The distribution of chlorophyll-related compounds (CRCs) derived from dietary spinach was investigated in different organs the rabbits. The rabbits in the experimental group consumed 100 g of freeze-dried spinach powder after a 24 h fasting period and sacrificed 2, 4, 8, 12 and 24 h later and in the control group sacrificed after the 24 h fasting period. The main CRCs in the liver were found to be chlorophyll (Chl a) and b, chlorophyllide (Chlide) a and b, pheophytin (Phe) a and b and pheophorbide (Pho) a and b, which reached their peak values at 8 h post-feeding. The gallbladder contained mainly Chlide a and a', Pho a and a', Pho b and b', which peaked their values at 2 h post-feeding. Pho a and b were consistently observed in the blood and peaked at 12 h post-feeding. The earlier appearance of Chlide a', Pho a' and Pho b' in the gallbladder compared to the liver indicated that these CRCs were compartmentalized differently and might undergo the same type of vectorialized transport as characterized for the bile salts. Pho levels peaked later in the blood compared to the liver, suggesting that Pho might be released into the peripheral blood circulation from the liver. In conclusion, Chlide and Pho were the principal Chl metabolites in the rabbits. Our data may expand our understanding of the metabolism and biodistribution of CRCs in the human body. A number of biological functions, including anti-oxidation, anti-tumor and anti-aging have recently been attributed to CRCs, it will be interesting to explore, if the binding of Chlide and Pho to other nutrients or trace metal ions in the body mediate their biological functions.</p>\",\"PeriodicalId\":13281,\"journal\":{\"name\":\"Indian journal of biochemistry & biophysics\",\"volume\":\"51 5\",\"pages\":\"388-95\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian journal of biochemistry & biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of biochemistry & biophysics","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究了食用菠菜中叶绿素相关化合物(CRCs)在家兔不同器官中的分布。实验组在禁食24 h后灌胃冻干菠菜粉100 g,分别于禁食2、4、8、12、24 h后处死,对照组在禁食24 h后处死。肝脏中主要的CRCs为叶绿素(Chl a)和b、叶绿素内酯(Chlide) a和b、叶绿素内酯(Phe) a和b、叶绿素内酯(Pho) a和b,在摄食后8 h达到峰值。胆囊中主要含有氯化胆碱a和a′、磷酸胆碱a和a′、磷酸胆碱b和b′,在饲喂后2 h达到最高值。血中Pho a和Pho b持续存在,并在喂养后12 h达到峰值。Chlide a', Pho a'和Pho b'在胆囊中较早出现,这表明这些crc的区隔不同,可能经历了与胆汁盐相同的矢量化运输。与肝脏相比,ph在血液中的峰值较晚,这表明Pho可能从肝脏释放到外周血循环中。由此可见,Chlide和Pho是家兔体内主要的Chl代谢产物。我们的数据可能会扩大我们对人体中crc的代谢和生物分布的理解。CRCs具有抗氧化、抗肿瘤、抗衰老等多种生物学功能,如果clide和Pho与体内其他营养物质或微量金属离子结合介导其生物学功能,将是一个值得探讨的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Organ-specific distribution of chlorophyll-related compounds from dietary spinach in rabbits.

The distribution of chlorophyll-related compounds (CRCs) derived from dietary spinach was investigated in different organs the rabbits. The rabbits in the experimental group consumed 100 g of freeze-dried spinach powder after a 24 h fasting period and sacrificed 2, 4, 8, 12 and 24 h later and in the control group sacrificed after the 24 h fasting period. The main CRCs in the liver were found to be chlorophyll (Chl a) and b, chlorophyllide (Chlide) a and b, pheophytin (Phe) a and b and pheophorbide (Pho) a and b, which reached their peak values at 8 h post-feeding. The gallbladder contained mainly Chlide a and a', Pho a and a', Pho b and b', which peaked their values at 2 h post-feeding. Pho a and b were consistently observed in the blood and peaked at 12 h post-feeding. The earlier appearance of Chlide a', Pho a' and Pho b' in the gallbladder compared to the liver indicated that these CRCs were compartmentalized differently and might undergo the same type of vectorialized transport as characterized for the bile salts. Pho levels peaked later in the blood compared to the liver, suggesting that Pho might be released into the peripheral blood circulation from the liver. In conclusion, Chlide and Pho were the principal Chl metabolites in the rabbits. Our data may expand our understanding of the metabolism and biodistribution of CRCs in the human body. A number of biological functions, including anti-oxidation, anti-tumor and anti-aging have recently been attributed to CRCs, it will be interesting to explore, if the binding of Chlide and Pho to other nutrients or trace metal ions in the body mediate their biological functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indian journal of biochemistry & biophysics
Indian journal of biochemistry & biophysics 生物-生化与分子生物学
CiteScore
2.90
自引率
50.00%
发文量
88
审稿时长
3 months
期刊介绍: Started in 1964, this journal publishes original research articles in the following areas: structure-function relationships of biomolecules; biomolecular recognition, protein-protein and protein-DNA interactions; gene-cloning, genetic engineering, genome analysis, gene targeting, gene expression, vectors, gene therapy; drug targeting, drug design; molecular basis of genetic diseases; conformational studies, computer simulation, novel DNA structures and their biological implications, protein folding; enzymes structure, catalytic mechanisms, regulation; membrane biochemistry, transport, ion channels, signal transduction, cell-cell communication, glycobiology; receptors, antigen-antibody binding, neurochemistry, ageing, apoptosis, cell cycle control; hormones, growth factors; oncogenes, host-virus interactions, viral assembly and structure; intermediary metabolism, molecular basis of disease processes, vitamins, coenzymes, carrier proteins, toxicology; plant and microbial biochemistry; surface forces, micelles and microemulsions, colloids, electrical phenomena, etc. in biological systems. Solicited peer reviewed articles on contemporary Themes and Methods in Biochemistry and Biophysics form an important feature of IJBB. Review articles on a current topic in the above fields are also considered. They must dwell more on research work done during the last couple of years in the field and authors should integrate their own work with that of others with acumen and authenticity, mere compilation of references by a third party is discouraged. While IJBB strongly promotes innovative novel research works for publication as full length papers, it also considers research data emanating from limited objectives, and extension of ongoing experimental works as ‘Notes’. IJBB follows “Double Blind Review process” where author names, affiliations and other correspondence details are removed to ensure fare evaluation. At the same time, reviewer names are not disclosed to authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信