{"title":"家兔食用菠菜中叶绿素相关化合物的器官特异性分布。","authors":"Ching-Yun Hsu, Tsan-Huei Yeh, Meng-Yuan Huang, Shene-Pin Hu, Pi-Yu Chao, Chi-Ming Yang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The distribution of chlorophyll-related compounds (CRCs) derived from dietary spinach was investigated in different organs the rabbits. The rabbits in the experimental group consumed 100 g of freeze-dried spinach powder after a 24 h fasting period and sacrificed 2, 4, 8, 12 and 24 h later and in the control group sacrificed after the 24 h fasting period. The main CRCs in the liver were found to be chlorophyll (Chl a) and b, chlorophyllide (Chlide) a and b, pheophytin (Phe) a and b and pheophorbide (Pho) a and b, which reached their peak values at 8 h post-feeding. The gallbladder contained mainly Chlide a and a', Pho a and a', Pho b and b', which peaked their values at 2 h post-feeding. Pho a and b were consistently observed in the blood and peaked at 12 h post-feeding. The earlier appearance of Chlide a', Pho a' and Pho b' in the gallbladder compared to the liver indicated that these CRCs were compartmentalized differently and might undergo the same type of vectorialized transport as characterized for the bile salts. Pho levels peaked later in the blood compared to the liver, suggesting that Pho might be released into the peripheral blood circulation from the liver. In conclusion, Chlide and Pho were the principal Chl metabolites in the rabbits. Our data may expand our understanding of the metabolism and biodistribution of CRCs in the human body. A number of biological functions, including anti-oxidation, anti-tumor and anti-aging have recently been attributed to CRCs, it will be interesting to explore, if the binding of Chlide and Pho to other nutrients or trace metal ions in the body mediate their biological functions.</p>","PeriodicalId":13281,"journal":{"name":"Indian journal of biochemistry & biophysics","volume":"51 5","pages":"388-95"},"PeriodicalIF":1.5000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organ-specific distribution of chlorophyll-related compounds from dietary spinach in rabbits.\",\"authors\":\"Ching-Yun Hsu, Tsan-Huei Yeh, Meng-Yuan Huang, Shene-Pin Hu, Pi-Yu Chao, Chi-Ming Yang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The distribution of chlorophyll-related compounds (CRCs) derived from dietary spinach was investigated in different organs the rabbits. The rabbits in the experimental group consumed 100 g of freeze-dried spinach powder after a 24 h fasting period and sacrificed 2, 4, 8, 12 and 24 h later and in the control group sacrificed after the 24 h fasting period. The main CRCs in the liver were found to be chlorophyll (Chl a) and b, chlorophyllide (Chlide) a and b, pheophytin (Phe) a and b and pheophorbide (Pho) a and b, which reached their peak values at 8 h post-feeding. The gallbladder contained mainly Chlide a and a', Pho a and a', Pho b and b', which peaked their values at 2 h post-feeding. Pho a and b were consistently observed in the blood and peaked at 12 h post-feeding. The earlier appearance of Chlide a', Pho a' and Pho b' in the gallbladder compared to the liver indicated that these CRCs were compartmentalized differently and might undergo the same type of vectorialized transport as characterized for the bile salts. Pho levels peaked later in the blood compared to the liver, suggesting that Pho might be released into the peripheral blood circulation from the liver. In conclusion, Chlide and Pho were the principal Chl metabolites in the rabbits. Our data may expand our understanding of the metabolism and biodistribution of CRCs in the human body. A number of biological functions, including anti-oxidation, anti-tumor and anti-aging have recently been attributed to CRCs, it will be interesting to explore, if the binding of Chlide and Pho to other nutrients or trace metal ions in the body mediate their biological functions.</p>\",\"PeriodicalId\":13281,\"journal\":{\"name\":\"Indian journal of biochemistry & biophysics\",\"volume\":\"51 5\",\"pages\":\"388-95\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian journal of biochemistry & biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of biochemistry & biophysics","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Organ-specific distribution of chlorophyll-related compounds from dietary spinach in rabbits.
The distribution of chlorophyll-related compounds (CRCs) derived from dietary spinach was investigated in different organs the rabbits. The rabbits in the experimental group consumed 100 g of freeze-dried spinach powder after a 24 h fasting period and sacrificed 2, 4, 8, 12 and 24 h later and in the control group sacrificed after the 24 h fasting period. The main CRCs in the liver were found to be chlorophyll (Chl a) and b, chlorophyllide (Chlide) a and b, pheophytin (Phe) a and b and pheophorbide (Pho) a and b, which reached their peak values at 8 h post-feeding. The gallbladder contained mainly Chlide a and a', Pho a and a', Pho b and b', which peaked their values at 2 h post-feeding. Pho a and b were consistently observed in the blood and peaked at 12 h post-feeding. The earlier appearance of Chlide a', Pho a' and Pho b' in the gallbladder compared to the liver indicated that these CRCs were compartmentalized differently and might undergo the same type of vectorialized transport as characterized for the bile salts. Pho levels peaked later in the blood compared to the liver, suggesting that Pho might be released into the peripheral blood circulation from the liver. In conclusion, Chlide and Pho were the principal Chl metabolites in the rabbits. Our data may expand our understanding of the metabolism and biodistribution of CRCs in the human body. A number of biological functions, including anti-oxidation, anti-tumor and anti-aging have recently been attributed to CRCs, it will be interesting to explore, if the binding of Chlide and Pho to other nutrients or trace metal ions in the body mediate their biological functions.
期刊介绍:
Started in 1964, this journal publishes original research articles in the following areas: structure-function relationships of biomolecules; biomolecular recognition, protein-protein and protein-DNA interactions; gene-cloning, genetic engineering, genome analysis, gene targeting, gene expression, vectors, gene therapy; drug targeting, drug design; molecular basis of genetic diseases; conformational studies, computer simulation, novel DNA structures and their biological implications, protein folding; enzymes structure, catalytic mechanisms, regulation; membrane biochemistry, transport, ion channels, signal transduction, cell-cell communication, glycobiology; receptors, antigen-antibody binding, neurochemistry, ageing, apoptosis, cell cycle control; hormones, growth factors; oncogenes, host-virus interactions, viral assembly and structure; intermediary metabolism, molecular basis of disease processes, vitamins, coenzymes, carrier proteins, toxicology; plant and microbial biochemistry; surface forces, micelles and microemulsions, colloids, electrical phenomena, etc. in biological systems. Solicited peer reviewed articles on contemporary Themes and Methods in Biochemistry and Biophysics form an important feature of IJBB.
Review articles on a current topic in the above fields are also considered. They must dwell more on research work done during the last couple of years in the field and authors should integrate their own work with that of others with acumen and authenticity, mere compilation of references by a third party is discouraged. While IJBB strongly promotes innovative novel research works for publication as full length papers, it also considers research data emanating from limited objectives, and extension of ongoing experimental works as ‘Notes’. IJBB follows “Double Blind Review process” where author names, affiliations and other correspondence details are removed to ensure fare evaluation. At the same time, reviewer names are not disclosed to authors.