{"title":"球形肿瘤的稳定性","authors":"George Dassios;Vasiliki Christina Panagiotopoulou","doi":"10.1093/imammb/dqv016","DOIUrl":null,"url":null,"abstract":"The mathematical analysis of the tumour growth attracted a lot of interest in the last two decades. However, as of today no generally accepted model for tumour growth exists. This is due partially to the incomplete understanding of the related pathology as well as the extremely complicated procedure that guides the evolution of a tumour. In the present work, we analyse the stability of a spherical tumour for four continuous models of an avascular tumour. Conditions for the stability are stated and the results are implemented numerically. It is observed that the steady-state radii that secure the stability of the tumour are different for each of the four models, although the differences are not very pronounced.","PeriodicalId":94130,"journal":{"name":"Mathematical medicine and biology : a journal of the IMA","volume":"33 3","pages":"273-293"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imammb/dqv016","citationCount":"1","resultStr":"{\"title\":\"On the stability of a spherical tumour\",\"authors\":\"George Dassios;Vasiliki Christina Panagiotopoulou\",\"doi\":\"10.1093/imammb/dqv016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mathematical analysis of the tumour growth attracted a lot of interest in the last two decades. However, as of today no generally accepted model for tumour growth exists. This is due partially to the incomplete understanding of the related pathology as well as the extremely complicated procedure that guides the evolution of a tumour. In the present work, we analyse the stability of a spherical tumour for four continuous models of an avascular tumour. Conditions for the stability are stated and the results are implemented numerically. It is observed that the steady-state radii that secure the stability of the tumour are different for each of the four models, although the differences are not very pronounced.\",\"PeriodicalId\":94130,\"journal\":{\"name\":\"Mathematical medicine and biology : a journal of the IMA\",\"volume\":\"33 3\",\"pages\":\"273-293\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/imammb/dqv016\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical medicine and biology : a journal of the IMA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/8189471/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical medicine and biology : a journal of the IMA","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8189471/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The mathematical analysis of the tumour growth attracted a lot of interest in the last two decades. However, as of today no generally accepted model for tumour growth exists. This is due partially to the incomplete understanding of the related pathology as well as the extremely complicated procedure that guides the evolution of a tumour. In the present work, we analyse the stability of a spherical tumour for four continuous models of an avascular tumour. Conditions for the stability are stated and the results are implemented numerically. It is observed that the steady-state radii that secure the stability of the tumour are different for each of the four models, although the differences are not very pronounced.