球形肿瘤的稳定性

George Dassios;Vasiliki Christina Panagiotopoulou
{"title":"球形肿瘤的稳定性","authors":"George Dassios;Vasiliki Christina Panagiotopoulou","doi":"10.1093/imammb/dqv016","DOIUrl":null,"url":null,"abstract":"The mathematical analysis of the tumour growth attracted a lot of interest in the last two decades. However, as of today no generally accepted model for tumour growth exists. This is due partially to the incomplete understanding of the related pathology as well as the extremely complicated procedure that guides the evolution of a tumour. In the present work, we analyse the stability of a spherical tumour for four continuous models of an avascular tumour. Conditions for the stability are stated and the results are implemented numerically. It is observed that the steady-state radii that secure the stability of the tumour are different for each of the four models, although the differences are not very pronounced.","PeriodicalId":94130,"journal":{"name":"Mathematical medicine and biology : a journal of the IMA","volume":"33 3","pages":"273-293"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imammb/dqv016","citationCount":"1","resultStr":"{\"title\":\"On the stability of a spherical tumour\",\"authors\":\"George Dassios;Vasiliki Christina Panagiotopoulou\",\"doi\":\"10.1093/imammb/dqv016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mathematical analysis of the tumour growth attracted a lot of interest in the last two decades. However, as of today no generally accepted model for tumour growth exists. This is due partially to the incomplete understanding of the related pathology as well as the extremely complicated procedure that guides the evolution of a tumour. In the present work, we analyse the stability of a spherical tumour for four continuous models of an avascular tumour. Conditions for the stability are stated and the results are implemented numerically. It is observed that the steady-state radii that secure the stability of the tumour are different for each of the four models, although the differences are not very pronounced.\",\"PeriodicalId\":94130,\"journal\":{\"name\":\"Mathematical medicine and biology : a journal of the IMA\",\"volume\":\"33 3\",\"pages\":\"273-293\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/imammb/dqv016\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical medicine and biology : a journal of the IMA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/8189471/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical medicine and biology : a journal of the IMA","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8189471/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在过去的二十年里,对肿瘤生长的数学分析引起了人们的极大兴趣。然而,到目前为止,还没有普遍接受的肿瘤生长模型。这部分是由于对相关病理的不完全理解以及指导肿瘤进化的极其复杂的程序。在目前的工作中,我们分析了球面肿瘤的稳定性为四个连续模型的无血管肿瘤。说明了稳定性的条件,并对结果进行了数值实现。可以观察到,确保肿瘤稳定性的稳态半径对于四种模型中的每一种都是不同的,尽管差异不是很明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the stability of a spherical tumour
The mathematical analysis of the tumour growth attracted a lot of interest in the last two decades. However, as of today no generally accepted model for tumour growth exists. This is due partially to the incomplete understanding of the related pathology as well as the extremely complicated procedure that guides the evolution of a tumour. In the present work, we analyse the stability of a spherical tumour for four continuous models of an avascular tumour. Conditions for the stability are stated and the results are implemented numerically. It is observed that the steady-state radii that secure the stability of the tumour are different for each of the four models, although the differences are not very pronounced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信